Skip to main content
Log in

Geometric phase: an indicator of entanglement

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Using a kinematic approach we show that the non-adiabatic, non-cyclic, geometric phase corresponding to the radiation emitted by a three level cascade system provides a sensitive diagnostic tool for determining the entanglement properties of the two modes of radiation. The nonunitary, noncyclic path in the state space may be realized through the same control parameters which control the purity/mixedness and entanglement. We show analytically that the geometric phase is related to concurrence in certain region of the parameter space. We further show that the rate of change of the geometric phase reveals its resilience to fluctuations only for pure Bell type states. Lastly, the derivative of the geometric phase carries information on both purity/mixedness and entanglement/separability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Shapere, F. Wilczek, Geometric Phases in Physics (World Scientific, Singapore, 1989)

  2. A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanziger, The Geometric Phase in Quantum Systems (Springer Verlag, Heidelberg, 2003)

  3. A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanziger, J. Phys. A: Math. Theor. 43 (2010) (Special issue on Aharanov-Bohm effect and Geometric phase)

  4. E. Sjöqvist, Physics 1, 35 (2008)

    Article  Google Scholar 

  5. E. Knill, Nature 434, 39 (2005)

    Article  ADS  Google Scholar 

  6. L.-A. Wu, P. Zanardi, D.A. Lidar, Phys. Rev. Lett. 95, 130501 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  7. O. Oreshkov et al., Phys. Rev. Lett. 102, 070502 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  8. J.A. Jones, V. Vedral, A. Ekert, G. Castagnoli, Nature 403, 869 (2000)

    Article  ADS  Google Scholar 

  9. M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984)

    Article  ADS  MATH  Google Scholar 

  10. Y. Aharonov, J. Anandan, Phys. Rev. Lett. 58, 1593 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  11. J. Anandan, Y. Aharonov, Phys. Rev. D 38, 1863 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  12. J. Samuel, R. Bhandari, Phys. Rev. Lett. 60, 2339 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  13. A.K. Pati, Phys. Rev. A 52, 2576 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  14. A.K. Pati, J. Phys. A: Math. Theor. 28, 2087 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. D.M. Tong, E. Sjöqvist, L.C. Kwek, C.H. Oh, Phys. Rev. Lett. 93, 080405 (2004)

    Article  ADS  Google Scholar 

  16. N. Mukunda, R. Simon, Ann. Phys. 228, 205 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. A. Carollo et al., Phys. Rev. Lett. 90, 160402 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Carollo et al., Phys. Rev. Lett. 92, 020402 (2004)

    Article  ADS  Google Scholar 

  19. D.M. Tong et al., Phys. Rev. Lett. 93, 080405 (2004)

    Article  ADS  Google Scholar 

  20. K.-P. Marzlin et al., Phys. Rev. Lett. 93, 260402 (2004)

    Article  ADS  Google Scholar 

  21. M.S. Sarandy, D.A. Lidar, Phys. Rev. A 73, 062101 (2006)

    Article  ADS  Google Scholar 

  22. M.S. Sarandy et al., Phys. Rev. A 76, 052112 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Uhlmann, Rep. Math. Phys. 24, 229 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. A. Uhlmann, Lett. Math. Phys. 21, 229 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. S. Banerjee, R. Srikanth, Eur. Phys. J. D 46, 335 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  26. E. Sjöqvist et al., Phys. Rev. Lett. 85, 2845 (2000)

    Article  ADS  Google Scholar 

  27. E. Sjöqvist, Phys. Rev. A 62, 022109 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  28. B. Hessmo, E. Sjöqvist, Phys. Rev. A 62, 062301 (2000)

    Article  ADS  Google Scholar 

  29. D.M. Tong et al., J. Phys. A: Math. Theor. 36, 1149 (2003)

    Article  ADS  MATH  Google Scholar 

  30. D.M. Tong et al., Phys. Rev. A 68, 022106 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Ericsson et al., Phys. Rev. Lett. 91, 090405 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  32. P. Mehta, J. Samuel, S. Sinha, Phys. Rev. A 82, 034102 (2010)

    Article  ADS  Google Scholar 

  33. S.N. Sandhya, V. Ravishankar, Phys. Rev. A 82, 062301 (2010)

    Article  ADS  Google Scholar 

  34. J.G. Banacloche, Y.-Q. Li, S.-Z. Jin, M. Xiao, Phys. Rev. A 51, 576 (1995)

    Article  ADS  Google Scholar 

  35. J.F. Clauser, Phys. Rev. D 9, 853 (1974)

    Article  ADS  Google Scholar 

  36. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, 1997), p. 161

  37. C.S. Castro, M.S. Sarandy, Phys. Rev. A 83, 042334 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S.N. Sandhya or S. Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandhya, S., Banerjee, S. Geometric phase: an indicator of entanglement. Eur. Phys. J. D 66, 168 (2012). https://doi.org/10.1140/epjd/e2012-30211-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30211-5

Keywords

Navigation