Skip to main content
Log in

Theoretical calculations on the NaS and NaS+ radicals: electronic structure, spectroscopy and spin-orbit couplings

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We used an ab initio methodology for the computation of the potential energy curves of the lowest electronic states of NaS and NaS+ diatomics. Using these highly correlated wavefunctions, we calculated their spin-orbit couplings. The X2Π and the A2Σ+ electronic states of NaS are found to possess deep potential wells. The upper bound electronic states have either shallow potential wells located in the molecular region or potentials of ∼ 1 eV depth located for large NaS distances. For NaS+, our calculations reveal the existence of shallow potentials for all states correlating to the four lowest dissociation limits. Using our potentials, we calculated an accurate set of spectroscopic constants for NaS and NaS+. Most of the data relative to the electronic excited states represent predictions. The spin-orbit induced predissociation of NaS(A2Σ+ is discussed. Finally, our cationic potentials and the NaS(X2Π) potential were used for the prediction of the single ionization spectrum of NaS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Soldan, E.P.F. Lee, S.D. Gamblin, T.G. Wright, Phys. Chem. Chem. Phys. 1, 4947 (1999), and references therein

    Article  Google Scholar 

  2. B.Z. Li, L.M. Ziurys, Astrophys. J. 488, L137 (1997)

    Article  ADS  Google Scholar 

  3. H. Partridge, S.R. Langhoff, C.W. Bauschlicher Jr., J. Chem. Phys. 88, 6431 (1988)

    Article  ADS  Google Scholar 

  4. E.P.F. Lee, T.G. Wright, Chem. Phys. Lett. 397, 194 (2004)

    Article  ADS  Google Scholar 

  5. P.W. Fowler, A.J. Sadlej, Mol. Phys. 73, 43 (1991)

    Article  ADS  Google Scholar 

  6. H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K.R. Shamasundar, T.B. Adler, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklaß, D.P. O’Neill, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, see http://www.molpro.net for more details

  7. Unofficial set from D. Feller, http://www.emsl.pnl.gov/forms/basisform.html

  8. D.E. Woon, T.H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993)

    Article  ADS  Google Scholar 

  9. R.A. Kendall, T.H. Dunning Jr., R.J. Harrison, J. Chem. Phys. 96, 6796 (1992)

    Article  ADS  Google Scholar 

  10. P.J. Knowles, H.-J. Werner, Chem. Phys. Lett. 115, 259 (1985)

    Article  ADS  Google Scholar 

  11. H.-J. Werner, P.J. Knowles, J. Chem. Phys. 82, 5053 (1985)

    Article  ADS  Google Scholar 

  12. P.J. Knowles, H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988)

    Article  ADS  Google Scholar 

  13. H.-J. Werner, P.J. Knowles, J. Chem. Phys. 89, 5803 (1988)

    Article  ADS  Google Scholar 

  14. R. Llusar, M. Casarrubios, Z. Barandiarán, L. Seijo, J. Chem. Phys. 105, 5321 (1996)

    Article  ADS  Google Scholar 

  15. T. Zeng, D.G. Fedorov, M.W. Schmidt, M. Klobukowski, J. Chem. Phys. 134, 214107 (2011)

    Article  ADS  Google Scholar 

  16. M. Schweizer, H.-J. Werner, P.J. Knowles, P. Palmieri, Mol. Phys. 98, 1823 (2000)

    ADS  Google Scholar 

  17. J.W. Cooley, Math. Comput. 15, 363 (1961)

    MathSciNet  MATH  Google Scholar 

  18. R.J. Le Roy, LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels, University of Waterloo Chemical Physics Research Report CP-663, 2007, see http://leroy.uwaterloo.ca

  19. A. Maatouk, A. Ben Houria, O. Yazidi, N. Jaidane, M. Hochlaf, J. Phys. B 44, 225101 (2011)

    Article  ADS  Google Scholar 

  20. A. Maatouk, A. Ben Houria, O. Yazidi, N. Jaidane, M. Hochlaf, J. Chem. Phys. 133, 144302 (2010)

    Article  ADS  Google Scholar 

  21. T. Larbi, F. Khadri, H. Ghalila, S. Lahmar, M. Hochlaf, Chem. Phys. 373, 193 (2010)

    Article  ADS  Google Scholar 

  22. H. Lefebvre-Brion, R.W. Field, The Spectra and Dynamics of Diatomic Molecules (Elsevier, New York, 2004)

  23. V. Brites, D. Hammoutène, M. Hochlaf, J. Phys. Chem. A 112, 13419 (2008)

    Article  Google Scholar 

  24. F. Khadri, H. Ndome, S. Lahmar, Z. Ben Lakhdar, M. Hochlaf, J. Mol. Spectrosc. 237, 232 (2006)

    Article  ADS  Google Scholar 

  25. F.R. Bennett, A.D.J. Critchley, G.C. King, R.J. Le Roy, I.R. McNab, Mol. Phys. 97, 35 (1999)

    Article  ADS  Google Scholar 

  26. A.J. Yencha, A.M. Juarez, S.P. Lee, G.C. King, F.R. Bennett, F. Kemp, I.R. McNab, Chem. Phys. 303, 179 (2004)

    Article  ADS  Google Scholar 

  27. A. Ben Houria, Z. Ben Lakhdar, M. Hochlaf, F. Kemp, I.R. McNab, J. Chem. Phys. 122, 054303 (2005)

    Article  ADS  Google Scholar 

  28. P.-Å. Malmqvist, Int. J. Quantum Chem. 30, 479 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hochlaf.

Additional information

Tables S1–S7 are only available in electronic form at www.epj.org.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khadri, F., Hochlaf, M. Theoretical calculations on the NaS and NaS+ radicals: electronic structure, spectroscopy and spin-orbit couplings. Eur. Phys. J. D 66, 145 (2012). https://doi.org/10.1140/epjd/e2012-30170-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30170-9

Keywords

Navigation