Skip to main content

An exploration of the potential energy surface of the seven atom silver cluster and a carbon monoxide ligand

Abstract

In a recent study [P.H. Acioli, N. Ratanavade, M.R. Cline, S. Srinivas, Lect. Notes Comput. Sci. 5545, 203 (2009)] of the interaction of small silver clusters (Ag n , n = 1–4) with carbon monoxide we have found that the CO molecule can bond with the cluster either in a bent or in a linear configuration with respect to the silver carbon bond. These trends were explained by the interaction of the highest occupied molecular orbital (HOMO) of the cluster and the antibonding (π ) orbital, the lowest unoccupied molecular orbital (LUMO) of CO. For a σ-type orbital of the cluster the CO molecule is bent with respect to the Ag-C bond, while for a π-type HOMO the CO molecule is aligned with respect to the Ag-C bond. These trends tend to maximize the overlap of the CO molecule’s LUMO with the cluster’s HOMO. Furthermore, the CO molecules have a tendency to bond atop an atom rather than on bridge or face sites. In the present work we extend the investigation to clusters of up to seven atoms. The focus of this paper is on the 7-atom silver cluster which shows interesting complexities in that the cluster is characterized by a π-like HOMO but has the CO bonded to a waist atom of the pentagonal bi-pyramid and bent with respect to the Ag-C bond, thus breaking the previously observed trend. In this work we provide an analysis of the potential energy surface of the CO bonded to Ag7 and explain why the bonding differs from those of the smaller clusters. We find that the bonding is still explained by a π-backdonation process. However, unlike the lowest size clusters there is an increase in overlap through bending and the complex prefers this conformation, rather than a linear Ag-C-O configuration.

This is a preview of subscription content, access via your institution.

References

  1. K.M. Ervin, Int. Rev. Phys. Chem. 20, 127 (2001)

    Article  Google Scholar 

  2. T.M. Bernhardt, Int. J. Mass. Spectrom 243, 1 (2005)

    Article  ADS  Google Scholar 

  3. A.W. Castleman Jr., Catal. Sci. 141, 1243 (2011), and references therein

  4. M. Valden, X. Lai, D.W. Goodman, Science 281, 1647 (1988)

    Article  ADS  Google Scholar 

  5. B. Yoon, H. Häkkinen, U. Landman, A. Wörz, J.-M. Antonietti, S. Abbet, K. Judai, U. Heiz, Science 307, 403 (2005)

    Article  ADS  Google Scholar 

  6. M. Neumaier, F. Weigend, O. Hampe, M.M. Kappes, J. Chem. Phys. 125, 104308 (2006)

    Article  ADS  Google Scholar 

  7. D.M. Popolan, M. Nössler, R. Mitrić, T.M. Bernhardt, V. Bonačić-Koutecký, J. Phys. Chem. A 115, 951 (2011)

    Article  Google Scholar 

  8. E.A. Carter, W.A. Goddard, Surf. Sci. 209, 243 (1989)

    Article  ADS  Google Scholar 

  9. G.E. Johnson, Q.C. Hu, J. Laskin, Annu. Rev. Anal. Chem. 4, 83 (2011)

    Article  Google Scholar 

  10. P.J. Boussard, P.E.M. Seigbahn, M. Svensson, Chem. Phys. Lett. 231, 337 (1994)

    Article  ADS  Google Scholar 

  11. J. Zhou, Z.-H. Li, W.-N. Wang, K.-N. Fan, J. Phys. Chem. A 110, 7167 (2006)

    Article  Google Scholar 

  12. L. Jiang, Q.J. Xu, J. Phys. Chem. A 110, 11488 (2006)

    Article  Google Scholar 

  13. L. Giordano, A.D. Vitto, G. Pachionni, A.M. Ferrari, Surf. Sci. 540, 63 (2003)

    Article  ADS  Google Scholar 

  14. T.M. Bernhardt, L.D. Socaciu-Siebert, J. Hagen, L. Wöste, Appl. Catal. A 291, 170 (2005)

    Article  Google Scholar 

  15. J. Hagen, L.D. Socaciu-Siebert, J. Le Roux, D. Popolan, S. Vajda, T.M. Bernhardt, L. Wöste, Int. J. Mass. Spectrom. 261, 152 (2007)

    Article  ADS  Google Scholar 

  16. P.H. Acioli, N. Ratanavade, M.R. Cline, S. Srinivas, Lect. Notes Comput. Sci. 5545, 203 (2009)

    Article  Google Scholar 

  17. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  18. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  19. M.J. Frisch et al., Gaussian03, Gaussian (Inc., Wallingford CT, 2004)

  20. D. Andrae, U. Haussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 77, 123 (1990)

    Article  Google Scholar 

  21. N. Godbout, D.R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 70, 560 (1992)

    Article  Google Scholar 

  22. C. Sosa, J. Andzelm, B.C. Elkin, E. Wimmer, K.D. Dobbs, D.A. Dixon, J. Phys. Chem. 96, 6630 (1992)

    Article  Google Scholar 

  23. S. Srinivas, U. Salian, J. Jellinek, in Metal-ligand Interactions in Chemistry, Physics, and Biology, edited by N. Russo, D.R. Salahub (Kluwer Academic Publishers, Dordrecht, 2000)

  24. V. Bonačić-Koutecký, L. Cespiva, P. Fantucci, J. Koutecký, J. Chem. Phys. 98, 7981 (1993)

    Article  ADS  Google Scholar 

  25. I.G. Kaplan, R. Santamaria, O. Novaro, Int. J. Quant. Chem. 27, 743 (1993)

    Article  Google Scholar 

  26. R. Poteau, J.-L. Heully, F. Spiegelmann, Phys. D 40, 479 (1997)

    Article  ADS  Google Scholar 

  27. S. Dapprich, G.J. Frenking, J. Phys. Chem. 99, 9352 (1995)

    Article  Google Scholar 

  28. G. Frenking, N. Frohlich, Chem. Rev. 100, 717 (2000)

    Article  Google Scholar 

  29. S.I. Gorelsky, S. Ghosh, E.I. Solomon, J. Am. Chem. Soc. 128, 278 (2006)

    Article  Google Scholar 

  30. S.I. Gorelsky, E.I., Solomon, Theor. Chem. Acc. 129, 57 (2008)

    Article  Google Scholar 

  31. CRC Handbook of Chemistry and Physics, edited by W.M. Haynes, 92nd edn. (Taylor & Francis LLC, Boca Raton, 2011)

  32. K. Kitaura, K. Morokuma, Int. J. Quant. Chem. 10, 325 (1976)

    Article  Google Scholar 

  33. T. Ziegler, A. Rauk, Theor. Chim. Acta, 46, 1 (1978)

    Google Scholar 

  34. J.P. Perdew, J.A. Chevary, S.H., Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  35. J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533 (1996)

    Article  ADS  Google Scholar 

  36. J. Lee, J.-G. Lee, J.T. Yates Jr, Surf. Sci. 594, 20 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Acioli, P.H., Burkland, S. & Srinivas, S. An exploration of the potential energy surface of the seven atom silver cluster and a carbon monoxide ligand. Eur. Phys. J. D 66, 215 (2012). https://doi.org/10.1140/epjd/e2012-30136-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30136-y

Keywords