An exploration of the potential energy surface of the seven atom silver cluster and a carbon monoxide ligand

  • P. H. Acioli
  • S. Burkland
  • S. Srinivas
Regular Article


In a recent study [P.H. Acioli, N. Ratanavade, M.R. Cline, S. Srinivas, Lect. Notes Comput. Sci. 5545, 203 (2009)] of the interaction of small silver clusters (Ag n , n = 1–4) with carbon monoxide we have found that the CO molecule can bond with the cluster either in a bent or in a linear configuration with respect to the silver carbon bond. These trends were explained by the interaction of the highest occupied molecular orbital (HOMO) of the cluster and the antibonding (π ) orbital, the lowest unoccupied molecular orbital (LUMO) of CO. For a σ-type orbital of the cluster the CO molecule is bent with respect to the Ag-C bond, while for a π-type HOMO the CO molecule is aligned with respect to the Ag-C bond. These trends tend to maximize the overlap of the CO molecule’s LUMO with the cluster’s HOMO. Furthermore, the CO molecules have a tendency to bond atop an atom rather than on bridge or face sites. In the present work we extend the investigation to clusters of up to seven atoms. The focus of this paper is on the 7-atom silver cluster which shows interesting complexities in that the cluster is characterized by a π-like HOMO but has the CO bonded to a waist atom of the pentagonal bi-pyramid and bent with respect to the Ag-C bond, thus breaking the previously observed trend. In this work we provide an analysis of the potential energy surface of the CO bonded to Ag7 and explain why the bonding differs from those of the smaller clusters. We find that the bonding is still explained by a π-backdonation process. However, unlike the lowest size clusters there is an increase in overlap through bending and the complex prefers this conformation, rather than a linear Ag-C-O configuration.


Clusters and Nanostructures 


  1. 1.
    K.M. Ervin, Int. Rev. Phys. Chem. 20, 127 (2001)CrossRefGoogle Scholar
  2. 2.
    T.M. Bernhardt, Int. J. Mass. Spectrom 243, 1 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A.W. Castleman Jr., Catal. Sci. 141, 1243 (2011), and references thereinGoogle Scholar
  4. 4.
    M. Valden, X. Lai, D.W. Goodman, Science 281, 1647 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    B. Yoon, H. Häkkinen, U. Landman, A. Wörz, J.-M. Antonietti, S. Abbet, K. Judai, U. Heiz, Science 307, 403 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    M. Neumaier, F. Weigend, O. Hampe, M.M. Kappes, J. Chem. Phys. 125, 104308 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    D.M. Popolan, M. Nössler, R. Mitrić, T.M. Bernhardt, V. Bonačić-Koutecký, J. Phys. Chem. A 115, 951 (2011)CrossRefGoogle Scholar
  8. 8.
    E.A. Carter, W.A. Goddard, Surf. Sci. 209, 243 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    G.E. Johnson, Q.C. Hu, J. Laskin, Annu. Rev. Anal. Chem. 4, 83 (2011)CrossRefGoogle Scholar
  10. 10.
    P.J. Boussard, P.E.M. Seigbahn, M. Svensson, Chem. Phys. Lett. 231, 337 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    J. Zhou, Z.-H. Li, W.-N. Wang, K.-N. Fan, J. Phys. Chem. A 110, 7167 (2006)CrossRefGoogle Scholar
  12. 12.
    L. Jiang, Q.J. Xu, J. Phys. Chem. A 110, 11488 (2006)CrossRefGoogle Scholar
  13. 13.
    L. Giordano, A.D. Vitto, G. Pachionni, A.M. Ferrari, Surf. Sci. 540, 63 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    T.M. Bernhardt, L.D. Socaciu-Siebert, J. Hagen, L. Wöste, Appl. Catal. A 291, 170 (2005)CrossRefGoogle Scholar
  15. 15.
    J. Hagen, L.D. Socaciu-Siebert, J. Le Roux, D. Popolan, S. Vajda, T.M. Bernhardt, L. Wöste, Int. J. Mass. Spectrom. 261, 152 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    P.H. Acioli, N. Ratanavade, M.R. Cline, S. Srinivas, Lect. Notes Comput. Sci. 5545, 203 (2009)CrossRefGoogle Scholar
  17. 17.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    M.J. Frisch et al., Gaussian03, Gaussian (Inc., Wallingford CT, 2004)Google Scholar
  20. 20.
    D. Andrae, U. Haussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 77, 123 (1990)CrossRefGoogle Scholar
  21. 21.
    N. Godbout, D.R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 70, 560 (1992)CrossRefGoogle Scholar
  22. 22.
    C. Sosa, J. Andzelm, B.C. Elkin, E. Wimmer, K.D. Dobbs, D.A. Dixon, J. Phys. Chem. 96, 6630 (1992)CrossRefGoogle Scholar
  23. 23.
    S. Srinivas, U. Salian, J. Jellinek, in Metal-ligand Interactions in Chemistry, Physics, and Biology, edited by N. Russo, D.R. Salahub (Kluwer Academic Publishers, Dordrecht, 2000)Google Scholar
  24. 24.
    V. Bonačić-Koutecký, L. Cespiva, P. Fantucci, J. Koutecký, J. Chem. Phys. 98, 7981 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    I.G. Kaplan, R. Santamaria, O. Novaro, Int. J. Quant. Chem. 27, 743 (1993)CrossRefGoogle Scholar
  26. 26.
    R. Poteau, J.-L. Heully, F. Spiegelmann, Phys. D 40, 479 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    S. Dapprich, G.J. Frenking, J. Phys. Chem. 99, 9352 (1995)CrossRefGoogle Scholar
  28. 28.
    G. Frenking, N. Frohlich, Chem. Rev. 100, 717 (2000)CrossRefGoogle Scholar
  29. 29.
    S.I. Gorelsky, S. Ghosh, E.I. Solomon, J. Am. Chem. Soc. 128, 278 (2006)CrossRefGoogle Scholar
  30. 30.
    S.I. Gorelsky, E.I., Solomon, Theor. Chem. Acc. 129, 57 (2008)CrossRefGoogle Scholar
  31. 31.
    CRC Handbook of Chemistry and Physics, edited by W.M. Haynes, 92nd edn. (Taylor & Francis LLC, Boca Raton, 2011)Google Scholar
  32. 32.
    K. Kitaura, K. Morokuma, Int. J. Quant. Chem. 10, 325 (1976)CrossRefGoogle Scholar
  33. 33.
    T. Ziegler, A. Rauk, Theor. Chim. Acta, 46, 1 (1978)Google Scholar
  34. 34.
    J.P. Perdew, J.A. Chevary, S.H., Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    J. Lee, J.-G. Lee, J.T. Yates Jr, Surf. Sci. 594, 20 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • P. H. Acioli
    • 1
  • S. Burkland
    • 1
  • S. Srinivas
    • 1
  1. 1.Department of PhysicsNortheastern Illinois UniversityChicagoUSA

Personalised recommendations