Skip to main content
Log in

Spectroscopic properties, potential energy surfaces and interaction energies of RgClF (Rg = Kr and Xe) van der Waals complexes

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Spectroscopic properties, dissociation energies, potential energy surfaces (PES) and interaction energies of linear, anti-linear and T-shaped isomers of KrClF and XeClF van der Waals complexes have been studied in detail using MP2 and CCSD(T) methods in conjunction with correlation consistent triple-ζ and quadruple-ζ basis sets. A method has been developed to calculate the depth of the potential well and cubic anharmonic force constant of the complexes. In this method, the Lennard-Jones potential is used to describe the van der Waals complexes. Both potential method and supermolecular approach are applied to accurately calculate the depth of the potential well and dissociation energy and also to check the consistency of the calculated values. Well depths obtained from potential energy curves are in harmony with that calculated by potential method. Most of the spectroscopic properties and depth of the potential well for these complexes are reported for the first time. Three potential minima corresponding to linear, anti-linear and nearly asymmetric T-shaped isomers are found for RgClF complexes. Linear isomers are more stable than the T-shaped and anti-linear isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Laszlo, G.J. Schrobilgen, Angew. Chem. Int. Ed. Engl. 27, 479 (1988)

    Article  Google Scholar 

  2. N. Bartlett, Proc. Chem. Soc. 1962, 218 (1962)

    Google Scholar 

  3. N.N. Greenwood, A. Earnshaw, in Chemistry of the Elements (Butterworth-Heinemann, Oxford, 2001), p. 888

  4. T.O. Nelson, D.W. Setser, J. Phys. Chem. 95, 5374 (1991)

    Article  Google Scholar 

  5. T.O. Nelson, D.W. Setser, J.J. Qin, J. Phys. Chem. 97, 2585 (1993)

    Article  Google Scholar 

  6. M. Pettersson, J. Lundell, L. Khriachtchev, M. Räsänen, J. Chem. Phys. 109, 618 (1998)

    Article  ADS  Google Scholar 

  7. S.E. Novick, S.J. Harris, K.C. Janda, W. Klemperer, Can. J. Phys. 53, 2007 (1975)

    Article  ADS  Google Scholar 

  8. K. Higgins, F.M. Tao, W. Klemperer, J. Chem. Phys. 109, 3048 (1998)

    Article  ADS  Google Scholar 

  9. J.B. Davey, A.C. Legon, E.R. Waclawicki, Chem. Phys. Lett. 306, 133 (1999)

    Article  ADS  Google Scholar 

  10. A.E.S. Miller, C.C. Chuang, H.C. Fu, K.J. Higgins, W. Klemperer, J. Chem. Phys. 111, 7844 (1999)

    Article  ADS  Google Scholar 

  11. R. Prosmiti, C. Cuncha, P. Villarreal, G. Delgado-Barrio, J. Chem. Phys. 119, 4216 (2003)

    Article  ADS  Google Scholar 

  12. J.E. Lennard-Jones, Proc. R. Soc. Lond. A 106, 463 (1924)

    Article  ADS  Google Scholar 

  13. S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970)

    Article  ADS  Google Scholar 

  14. G. Herzberg, Infrared and Raman Spectra (Van Nostrand, Princeton, 1945)

  15. M.J. Frisch et al., Gaussian 09, Revision B.01 (Gaussian, Inc., Pittsburgh, 2009)

  16. M. Head-Gordon, J.A. Pople, M.J. Frisch, Chem. Phys. Lett. 153, 503 (1988)

    Article  ADS  Google Scholar 

  17. J.A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys. 87, 5968 (1987)

    Article  ADS  Google Scholar 

  18. T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)

    Article  ADS  Google Scholar 

  19. D.E. Woon, T.H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993)

    Article  ADS  Google Scholar 

  20. J.M.L. Martin, A. Sundermann, J. Chem. Phys. 114, 3408 (2001)

    Article  ADS  Google Scholar 

  21. A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, Mol. Phys. 80, 1431 (1993)

    Article  ADS  Google Scholar 

  22. F.M. Tao, W. Klemperer, J. Chem. Phys. 97, 440 (1992)

    Article  ADS  Google Scholar 

  23. R.H. Orcutt, R.H. Cole, J. Chem. Phys. 46, 697 (1967)

    Article  ADS  Google Scholar 

  24. A. Dalgarno, A.E. Kingston, Proc. R. Soc. Lond. Ser. A 259, 424 (1960)

    Article  ADS  Google Scholar 

  25. B. Fabricant, J.S. Muenter, J. Chem. Phys. 66, 5274 (1977)

    Article  ADS  Google Scholar 

  26. A.C. Legon, Angew. Chem. Int. Ed. 38, 2686 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakhira, S., Das, A.K. Spectroscopic properties, potential energy surfaces and interaction energies of RgClF (Rg = Kr and Xe) van der Waals complexes. Eur. Phys. J. D 66, 144 (2012). https://doi.org/10.1140/epjd/e2012-30110-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30110-9

Keywords

Navigation