Skip to main content
Log in

Cartesian and polar Schmidt bases for down-converted photons

How high dimensional entanglement protects the shared information from non-ideal measurements

  • Regular Article
  • Topical issue: High Dimensional Quantum Entanglement. Guest editors: Sonja Franke-Arnold, Alessandra Gatti and Nicolas Treps
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We derive an analytical form of the Schmidt modes of spontaneous parametric down-conversion (SPDC) biphotons in both Cartesian and polar coordinates. We show that these correspond to Hermite-Gauss (HG) or Laguerre-Gauss (LG) modes only for a specific value of their width, and we show how such value depends on the experimental parameters. The Schmidt modes that we explicitly derive allow one to set up an optimised projection basis that maximises the mutual information gained from a joint measurement. The possibility of doing so with LG modes makes it possible to take advantage of the properties of orbital angular momentum eigenmodes. We derive a general entropic entanglement measure using the Rényi entropy as a function of the Schmidt number, K, and then retrieve the von Neumann entropy, S. Using the relation between S and K we show that, for highly entangled states, a non-ideal measurement basis does not degrade the number of shared bits by a large extent. More specifically, given a non-ideal measurement which corresponds to the loss of a fraction of the total number of modes, we can quantify the experimental parameters needed to generate an entangled SPDC state with a sufficiently high dimensionality to retain any given fraction of shared bits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. A.K. Ekert, J.G. Rarity, P.R. Tapster, G. Massimo Palma, Phys. Rev. Lett. 69, 1293 (1992)

    Article  ADS  Google Scholar 

  3. W. Tittel, J. Brendel, H. Zbinden, N. Gisin, Phys. Rev. Lett. 84, 4737 (2000)

    Article  ADS  Google Scholar 

  4. P.G. Kwiat, J. Mod. Opt. 44, 2173 (1997)

    MathSciNet  ADS  MATH  Google Scholar 

  5. J.T. Barreiro, N.K. Langford, N.A. Peters, P.G. Kwiat, Phys. Rev. Lett. 95, 260501 (2005)

    Article  ADS  Google Scholar 

  6. B. Jack, A.M. Yao, J. Leach, J. Romero, S. Franke-Arnold, D.G. Ireland, S.M. Barnett, M.J. Padgett, Phys. Rev. A 81, 043844 (2010)

    Article  ADS  Google Scholar 

  7. R.W. Boyd, Nonlinear Optics (Academic Press, 2008)

  8. J.P. Torres, A. Alexandrescu, Lluis Torner, Phys. Rev. A 68, 050301 (2003)

    Article  ADS  Google Scholar 

  9. F.M. Miatto, A.M. Yao, S.M. Barnett, Phys. Rev. A 83, 033816 (2011)

    Article  ADS  Google Scholar 

  10. A.M. Yao, New J. Phys. 13, 053048 (2011)

    Article  ADS  Google Scholar 

  11. S.M. Barnett, Quantum Information (Oxford University Press, Oxford, 2009)

  12. S.M. Barnett, S.J.D. Phoenix, Phys. Rev. A 40, 2404 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  13. M.J.W. Hall, Phys. Rev. A 55, 100 (1997)

    Article  ADS  MATH  Google Scholar 

  14. M.J.W. Hall, E. Andersson, T. Brougham, Phys. Rev. A 74, 062308 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  15. C.K. Hong, L. Mandel, Phys. Rev. A 31, 2409 (1985)

    Article  ADS  Google Scholar 

  16. C.W. Monken, P.H. Souto Ribeiro, S. Padua, Phys. Rev. A 57, 3123 (1998)

    Article  ADS  Google Scholar 

  17. C.K. Law, J.H. Eberly, Phys. Rev. Lett. 92, 127903 (2004)

    Article  ADS  Google Scholar 

  18. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  19. C.K. Law, I.A. Walmsley, J.H. Eberly, Phys. Rev. Lett. 84, 5304 (2000)

    Article  ADS  Google Scholar 

  20. A. Ekert, P.L. Knight, Am. J. Phys. 63, 415 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. E. Abramochkin, V. Volostnikov, Opt. Commun. 83, 123 (1991)

    Article  ADS  Google Scholar 

  22. S.S. Straupe, D.P. Ivanov, A.A. Kalinkin, I.B. Bobrov, S.P. Kulik, Phys. Rev. A 83, 060302 (2011)

    Article  ADS  Google Scholar 

  23. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A. 45, 8185 (1992)

    Article  ADS  Google Scholar 

  24. C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, Urbana, 1949)

  25. E.T. Jaynes, Phys. Rev. 106, 620 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. T.M. Cover, J.A. Thomas, Elements of Information Theory (John Wiley & Sons, 1991)

  27. A. Réyni, Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability (1960), p. 547

  28. S.T. Flammia, A. Hamma, T.L. Hughes, X.G. Wen, Phys. Rev. Lett. 103, 261601 (2009)

    Article  ADS  Google Scholar 

  29. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54, 3824 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  30. C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  31. S.M. Barnett, S.J.D. Phoenix, Phys. Rev. A 44, 535 (1991)

    Article  ADS  Google Scholar 

  32. M.V. Fedorov, M.A. Efremov, P.A. Volkov, E.V. Moreva, S.S. Straupe, S.P. Kulik, Phys. Rev. A 77, 032336 (2008)

    Article  ADS  Google Scholar 

  33. Y.M. Mikhailova, P.A. Volkov, M.V. Fedorov, Phys. Rev. A 78, 062327 (2008)

    Article  ADS  Google Scholar 

  34. T. Brougham, S.M. Barnett, Phys. Rev. A 85, 032322 (2012)

    Article  ADS  Google Scholar 

  35. X. Ma, C.-H.F. Fung, H.-K. Lo, Phys. Rev. A 76, 012307 (2007)

    Article  ADS  Google Scholar 

  36. H. Di Lorenzo Pires, C.H. Monken, M.P. van Exter, Phys. Rev. A 80, 022307 (2009)

    Article  ADS  Google Scholar 

  37. G.N. Watson, J. London Math. Soc. 8, 189 (1933)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Miatto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miatto, F.M., Brougham, T. & Yao, A.M. Cartesian and polar Schmidt bases for down-converted photons. Eur. Phys. J. D 66, 183 (2012). https://doi.org/10.1140/epjd/e2012-30063-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30063-y

Keywords

Navigation