Observation of entanglement witnesses for orbital angular momentum states


Entanglement witnesses provide an efficient means of determining the level of entanglement of a system using the minimum number of measurements. Here we demonstrate the observation of two-dimensional entanglement witnesses in the high-dimensional basis of orbital angular momentum (OAM). In this case, the number of potentially entangled subspaces scales as d(d − 1)/2, where d is the dimension of the space. The choice of OAM as a basis is relevant as each subspace is not necessarily maximally entangled, thus providing the necessary state for certain tests of nonlocality. The expectation value of the witness gives an estimate of the state of each two-dimensional subspace belonging to the d-dimensional Hilbert space. These measurements demonstrate the degree of entanglement and therefore the suitability of the resulting subspaces for quantum information applications.

This is a preview of subscription content, log in to check access.


  1. 1.

    M.D. Reid, P.D. Drummond, W.P. Bowen, E.G. Cavalcanti, P.K. Lam, H.A. Bachor, U.L. Andersen, G. Leuchs, Rev. Mod. Phys. 81, 1727 (2009)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  2. 2.

    A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  3. 3.

    N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002)

    ADS  Article  Google Scholar 

  4. 4.

    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  5. 5.

    D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Nature 390, 575 (1997)

    ADS  Article  Google Scholar 

  6. 6.

    I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, N. Gisin, Nature 421, 509 (2003)

    ADS  Article  Google Scholar 

  7. 7.

    A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    ADS  MATH  Article  Google Scholar 

  8. 8.

    J.S. Bell, Physics 1, 195 (1964)

    Google Scholar 

  9. 9.

    L. Hardy, Phys. Rev. Lett. 71, 1665 (1993)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  10. 10.

    D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Phys. Rev. A 64, 052312 (2001)

    ADS  Article  Google Scholar 

  11. 11.

    N.K. Langford, R.B. Dalton, M.D. Harvey, J.L. OBrien, G.J. Pryde, A. Gilchrist, S.D. Bartlett, A.G. White, Phys. Rev. Lett. 93, 053601 (2004)

    ADS  Article  Google Scholar 

  12. 12.

    G. Molina-Terriza, A. Vaziri, J. Řehčáek, Z. Hradil, A. Zeilinger, Phys. Rev. Lett. 92, 167903 (2004)

    ADS  Article  Google Scholar 

  13. 13.

    K.J. Resch, P. Walther, A. Zeilinger, Phys. Rev. Lett. 94, 070402 (2005)

    MathSciNet  ADS  Article  Google Scholar 

  14. 14.

    D.N. Matsukevich, P. Maunz, D.L. Moehring, S. Olmschenk, C. Monroe, Phys. Rev. Lett. 100, 150404 (2008)

    ADS  Article  Google Scholar 

  15. 15.

    B. Jack, J. Leach, H. Ritsch, S.M. Barnett, M.J. Padgett, S. Franke-Arnold, New J. Phys. 11, 103024 (2009)

    ADS  Article  Google Scholar 

  16. 16.

    M. Agnew, J. Leach, M. McLaren, F.S. Roux, R.W. Boyd, Phys. Rev. A 84, 062101 (2011)

    ADS  Article  Google Scholar 

  17. 17.

    M. Lewenstein, B. Kraus, J.I. Cirac, P. Horodecki, Phys. Rev. A 62, 052310 (2000)

    ADS  Article  Google Scholar 

  18. 18.

    O. Gühne, P. Hyllus, D. Bruß, A. Ekert, M. Lewenstein, C. Macchiavello, A. Sanpera, Phys. Rev. A 66, 062305 (2002)

    ADS  Article  Google Scholar 

  19. 19.

    G.M. D’Ariano, C. Macchiavello, M.G.A. Paris, Phys. Rev. A 67, 042310 (2003)

    ADS  Article  Google Scholar 

  20. 20.

    A.O. Pittenger, M.H. Rubin, Phys. Rev. A 67, 012327 (2003)

    ADS  Article  Google Scholar 

  21. 21.

    R.A. Bertlmann, K. Durstberger, B.C. Hiesmayr, P. Krammer, Phys. Rev. A 72, 052331 (2005)

    ADS  Article  Google Scholar 

  22. 22.

    M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G.M. D’Ariano, C. Macchiavello, Phys. Rev. Lett. 91, 227901 (2003)

    ADS  Article  Google Scholar 

  23. 23.

    M. Bourennane, M. Eibl, C. Kurtsiefer, S. Gaertner, H. Weinfurter, O. Gühne, P. Hyllus, D. Bruß, M. Lewenstein, A. Sanpera, Phys. Rev. Lett. 92, 087902 (2004)

    ADS  Article  Google Scholar 

  24. 24.

    M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  25. 25.

    M. Lewenstein, B. Kraus, P. Horodecki, J.I. Cirac, Phys. Rev. A 63, 044304 (2001)

    MathSciNet  ADS  Article  Google Scholar 

  26. 26.

    D. Bruß, J.I. Cirac, P. Horodecki, F. Hulpke, B. Kraus, M. Lewenstein, A. Sanpera, J. Mod. Opt. 49, 1399 (2002)

    ADS  MATH  Article  Google Scholar 

  27. 27.

    J.P. Torres, A. Alexandrescu, L. Torner, Phys. Rev. A 68, 050301 (2003)

    ADS  Article  Google Scholar 

  28. 28.

    F.M. Miatto, A.M. Yao, S.M. Barnett, Phys. Rev. A 83, 033816 (2011)

    ADS  Article  Google Scholar 

  29. 29.

    A.M. Yao, New J. Phys. 13, 053048 (2011)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. Leach.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Agnew, M., Leach, J. & Boyd, R. Observation of entanglement witnesses for orbital angular momentum states. Eur. Phys. J. D 66, 156 (2012). https://doi.org/10.1140/epjd/e2012-30057-9

Download citation


  • Entangle State
  • Separable State
  • Orbital Angular Momentum
  • Entanglement Witness
  • Partial Transpose