Extracting spatial information from noise measurements of multi-spatial-mode quantum states

Abstract

We show that it is possible to use the spatial quantum correlations present in twin beams to extract information about the shape of a binary amplitude mask in the path of one of the beams. The scheme, based on noise measurements through homodyne detection, is useful in the regime where the number of photons is low enough that direct detection with a photodiode is difficult but high enough that photon counting is not an option. We find that under some conditions the use of quantum states of light leads to an enhancement of the sensitivity in the estimation of the shape of the mask over what can be achieved with a classical state with equivalent properties (mean photon flux and noise properties). In addition, we show that the level of enhancement that is obtained is a result of the quantum correlations and cannot be explained with only classical correlations.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M.I. Kolobov, Rev. Mod. Phys. 71, 1539 (1999)

    ADS  Article  Google Scholar 

  2. 2.

    M.I. Kolobov, Quantum Imaging (Springer, New York, 2007)

  3. 3.

    M.I. Kolobov, C. Fabre, Phys. Rev. Lett. 85, 3789 (2000)

    ADS  Article  Google Scholar 

  4. 4.

    E. Brambilla, L. Caspani, O. Jedrkiewicz, L.A. Lugiato, A. Gatti, Phys. Rev. A 77, 053807 (2008)

    ADS  Article  Google Scholar 

  5. 5.

    N. Treps, N. Grosse, W.P. Bowen, C. Fabre, H.A. Bachor, P.K. Lam, Science 301, 940 (2003)

    ADS  Article  Google Scholar 

  6. 6.

    H. Bechmann-Pasquinucci, W. Tittel, Phys. Rev. A 61, 062308 (2000)

    MathSciNet  ADS  Article  Google Scholar 

  7. 7.

    M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.A. Bachor, P.K. Lam, N. Treps, P. Buchhave, C. Fabre, C.C. Harb, Phys. Rev. Lett. 98, 083602 (2007)

    ADS  Article  Google Scholar 

  8. 8.

    V. Giovannetti, S. Lloyd, L. Maccone, Nat. Photon. 5, 222 (2011)

    ADS  Article  Google Scholar 

  9. 9.

    L.A. Lugiato, A. Gatti, Phys. Rev. Lett. 70, 3868 (1993)

    ADS  Article  Google Scholar 

  10. 10.

    L.A. Lugiato, P. Grangier, J. Opt. Soc. Am. B 14, 225 (1997)

    ADS  Article  Google Scholar 

  11. 11.

    A. Gatti, E. Brambilla, M. Bache, L.A. Lugiato, Phys. Rev. A 70, 013802 (2004)

    ADS  Article  Google Scholar 

  12. 12.

    E. Brambilla, A. Gatti, M. Bache, L.A. Lugiato, Phys. Rev. A 69, 023802 (2004)

    ADS  Article  Google Scholar 

  13. 13.

    V. Boyer, A.M. Marino, P.D. Lett, Phys. Rev. Lett. 100, 143601 (2008)

    ADS  Article  Google Scholar 

  14. 14.

    P. Navez, E. Brambilla, A. Gatti, L.A. Lugiato, Phys. Rev. A 65, 013813 (2001)

    ADS  Article  Google Scholar 

  15. 15.

    B.I. Erkmen, J.H. Shapiro, Adv. Opt. Photon. 2, 405 (2010)

    Article  Google Scholar 

  16. 16.

    D.V. Strekalov, A.V. Sergienko, D.N. Klyshko, Y.H. Shih, Phys. Rev. Lett. 74, 3600 (1995)

    ADS  Article  Google Scholar 

  17. 17.

    T.B. Pittman, Y.H. Shih, D.V. Strekalov, A.V. Sergienko, Phys. Rev. A 52, R3429 (1995)

    ADS  Article  Google Scholar 

  18. 18.

    A.F. Abouraddy, B.E.A. Saleh, A.V. Sergienko, M.C. Teich, Phys. Rev. Lett. 87, 123602 (2001)

    ADS  Article  Google Scholar 

  19. 19.

    R.S. Bennink, V. Wong, A.M. Marino, D.L. Aronstein, R.W. Boyd, C.R. Stroud, S. Lukishova, D.J. Gauthier, Phys. Rev. Lett. 88, 113901 (2002)

    ADS  Article  Google Scholar 

  20. 20.

    A. Gatti, E. Brambilla, M. Bache, L.A. Lugiato, Phys. Rev. Lett. 93, 093602 (2004)

    ADS  Article  Google Scholar 

  21. 21.

    J.B. Clark, Z. Zhou, Q. Glorieux, A.M. Marino, P.D. Lett, Opt. Express 20, 17050 (2012)

    ADS  Article  Google Scholar 

  22. 22.

    C.F. McCormick, A.M. Marino, V. Boyer, P.D. Lett, Phys. Rev. A 78, 043816 (2008)

    ADS  Article  Google Scholar 

  23. 23.

    M. Martinelli, N. Treps, S. Ducci, S. Gigan, A. Maitre, C. Fabre, Phys. Rev. A 67, 023808 (2003)

    ADS  Article  Google Scholar 

  24. 24.

    C.W. Helstrom, J. Stat. Phys. 1, 231 (1969)

    MathSciNet  ADS  Article  Google Scholar 

  25. 25.

    D.G. Cacuci, Sensitivity and Uncertainty Analysis: Theory (Chapman and Hall, 2003), Vol. 1

  26. 26.

    P.R. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, 2003)

  27. 27.

    R. Loudon, The Quantum Theory of Light (Oxford Academic Press, 2000)

  28. 28.

    V. Boyer, A.M. Marino, R.C. Pooser, P.D. Lett, Science 321, 544 (2008)

    ADS  Article  Google Scholar 

  29. 29.

    L.M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 84, 2722 (2000)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. M. Marino.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marino, A.M., Clark, J.B., Glorieux, Q. et al. Extracting spatial information from noise measurements of multi-spatial-mode quantum states. Eur. Phys. J. D 66, 288 (2012). https://doi.org/10.1140/epjd/e2012-30037-1

Download citation

Keywords

  • Topical issue: High Dimensional Quantum Entanglement. Guest editors: Sonja Franke-Arnold, Alessandra Gatti and Nicolas Treps