Skip to main content

Light with orbital angular momentum interacting with trapped ions

Abstract

We study the interaction of light beams carrying angular momentum with a single, trapped and well localized ion. We provide a detailed calculation of selection rules and excitation probabilities for quadrupole transitions. The results show the dependencies on the angular momentum and polarization of the laser beam as well as the direction of the quantization magnetic field. In order to optimally observe the specific effects, focusing the angular momentum beam close to the diffraction limit is required. We discuss a protocol for examining experimentally the effects on the S1/2 to D5/2 transition using a 40Ca+ ion. Various applications and advantages are expected when using light carrying angular momentum: in quantum information processing, where qubit states of ion crystals are controlled, parasitic light shifts could be avoided as the ion is excited in the dark zone of the beam at zero electric field amplitude. Such interactions also open the door to high dimensional entanglement between light and matter. In spectroscopy one might access transitions which have escaped excitation so far due to vanishing transition dipole moments.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. Blatt, D.J. Wineland, Nature 453, 1008 (2008)

    ADS  Article  Google Scholar 

  2. 2.

    M. Friese, J. Enger, H. Rubinsztein-Dunlop, N.R. Heckenberg, Phys. Rev. A 54, 1593 (1996)

    ADS  Article  Google Scholar 

  3. 3.

    S. Kulin, S. Aubin, S. Christe, B. Peker, S.L. Rolston, L.A. Orozco, J. Opt. B: Quant. Semiclass. Opt. 3, 353 (2001)

    ADS  Article  Google Scholar 

  4. 4.

    D. Rychtarik, B. Engeser, H.C. Nägerl, R. Grimm, Phys. Rev. Lett. 92, 173003 (2004)

    ADS  Article  Google Scholar 

  5. 5.

    M.F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, W.D. Phillips, Phys. Rev. Lett. 97, 170406 (2006)

    ADS  Article  Google Scholar 

  6. 6.

    S.W. Hell, M. Kroug, Appl. Phys. B 60, 495 (1995)

    ADS  Article  Google Scholar 

  7. 7.

    V. Klimov, D. Bloch, M. Ducloy, J.R.R. Leite, Opt. Express 17, 9718 (2009)

    ADS  Article  Google Scholar 

  8. 8.

    A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, Entanglement of orbital angular momentum states of photons, arXiv:quant-ph/0104070

  9. 9.

    S. Franke-Arnold, S.M. Barnett, M.J. Padgett, L. Allen, Phys. Rev. A 65, 033823 (2002)

    ADS  Article  Google Scholar 

  10. 10.

    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, 1998)

  11. 11.

    D.P. DiVincenzo, Fortschr. Phys. 48, 771 (2000)

    Article  MATH  Google Scholar 

  12. 12.

    A.B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, R. Blatt, Phys. Rev. Lett. 89, 103001 (2002)

    ADS  Article  Google Scholar 

  13. 13.

    M.A. Wilson, P. Bushev, J. Eschner, F. Schmidt-Kaler, C. Becher, B. Blatt, U. Dorner, Phys. Rev. Lett. 91, 213602 (2003)

    ADS  Article  Google Scholar 

  14. 14.

    J. Eschner, Eur. Phys. J. D 22, 341 (2003)

    ADS  Article  Google Scholar 

  15. 15.

    U. Poschinger, A. Walther, K. Singer, F. Schmidt-Kaler, Phys. Rev. Lett. 105, 263602 (2010)

    ADS  Article  Google Scholar 

  16. 16.

    L. Allen et al., Phys. Rev. A 45, 8185 (1992)

    ADS  Article  Google Scholar 

  17. 17.

    B.E.A. Saleh, M.C. Teich, B.E. Saleh, Fundamentals of Photonics (Wiley Online Library, 1991), Vol. 22

  18. 18.

    J.J. Sakurai, San Fu Tuan, Modern Quantum Mechanics (Addison-Wesley, California, 1985), Vol. 1

  19. 19.

    H.C. Nägerl, D. Leibfried, H. Rohde, G. Thalhammer, J. Eschner, F. Schmidt-Kaler, R. Blatt, Phys. Rev. A 60, 145 (1999)

    ADS  Article  Google Scholar 

  20. 20.

    G.R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, H. Walther, Nature 414, 49 (2001)

    ADS  Article  Google Scholar 

  21. 21.

    C. Roos, Controlling the Quantum State of Trapped Ions, Ph.D. thesis, Universität Innsbruck, 2000

  22. 22.

    D.F.V. James, Appl. Phys. B 66, 181 (1998)

    ADS  Article  Google Scholar 

  23. 23.

    S.J. Enk, Quantum Opt. 6, 445 (1994)

    ADS  Article  Google Scholar 

  24. 24.

    A. Picón, J. Mompart, J.R. de Aldana, L. Plaja, G.F. Calvo, L. Roso, Opt. Express 18, 3660 (2010)

    Article  Google Scholar 

  25. 25.

    A. Kreuter et al., Phys. Rev. A 71, 032504 (2005)

    ADS  Article  Google Scholar 

  26. 26.

    R. Dorn, S. Quabis, G. Leuchs, J. Mod. Opt. 50, 1917 (2003)

    MathSciNet  ADS  Google Scholar 

  27. 27.

    P.B. Monteiro, P.A.M. Neto, H.M. Nussenzveig, Phys. Rev. A 79, 033830 (2009)

    ADS  Article  Google Scholar 

  28. 28.

    R. Jáuregui, Phys. Rev. A 70, 033415 (2004)

    ADS  Article  Google Scholar 

  29. 29.

    G. Huber, F. Ziesel, U. Poschinger, K. Singer, F. Schmidt-Kaler, Appl. Phys. B 100, 725 (2010)

    ADS  Article  Google Scholar 

  30. 30.

    J. Eschner et al., J. Opt. Soc. Am. B 20, 1003 (2003)

    ADS  Article  Google Scholar 

  31. 31.

    D.J. Wineland, C. Monroe, W.M. Itano, B.E. King, D. Leibfried, D.M. Meekhof, C. Myatt, C. Wood, Experimental Primer on the Trapped Ion Quantum Computer, Quantum Computing (1998), pp. 57–84

  32. 32.

    G. Morigi, I. Cirac, K. Ellinger, P. Zoller, Phys. Rev. A 57, 2909 (1998)

    ADS  Article  Google Scholar 

  33. 33.

    I. Cirac, R. Blatt, P. Zoller, W. Phillips, Phys. Rev. A 46, 2668 (1992)

    ADS  Article  Google Scholar 

  34. 34.

    A. Steane, C.F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, R. Blatt, Phys. Rev. A 62, 042305 (2000)

    ADS  Article  Google Scholar 

  35. 35.

    D.G. Grier et al., Nature 424, 810 (2003)

    ADS  Article  Google Scholar 

  36. 36.

    G. Gibson, J. Courtial, M.J. Padgett, M. Vasnetsov, V. Pasko, S.M. Barnett, S. Franke-Arnold, Opt. Express 12, 5448 (2004)

    ADS  Article  Google Scholar 

  37. 37.

    A. Sørensen, K. Mølmer, Phys. Rev. Lett. 82, 1971 (1999)

    ADS  Article  Google Scholar 

  38. 38.

    J. Benhelm, G. Kirchmair, C.F. Roos, R. Blatt, Nat. Phys. 3, 463 (2008)

    Article  Google Scholar 

  39. 39.

    C.F. Roos, New J. Phys. 10, 013002 (2008)

    Article  Google Scholar 

  40. 40.

    F. Schmidt-Kaler, H. Haeffner, S. Gulde, M. Riebe, G. Lancaster, J. Eschner, C. Becher, R. Blatt, Europhys. Lett. 65, 587 (2004)

    ADS  Article  Google Scholar 

  41. 41.

    F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G.P.T. Lancaster, T. Deuschle, C. Becher, C.F. Roos, J. Eschner, R. Blatt, Nature 422, 408 (2003)

    ADS  Article  Google Scholar 

  42. 42.

    G.F. Quinteiro, P.I. Tamborenea, Phys. Rev. B 79, 155450 (2009)

    ADS  Article  Google Scholar 

  43. 43.

    G.F. Quinteiro, A.O. Lucero, P.I. Tamborenea, J. Phys.: Condens. Matter 22, 505802 (2010)

    Article  Google Scholar 

  44. 44.

    S. Dawkins, D. Mitsch, D. Reitz, E. Vetsch, A. Rauschenbeutel, Phys. Rev. Lett. 107, 243601 (2011)

    ADS  Article  Google Scholar 

  45. 45.

    G. Sagué, E. Vetsch, W. Alt, D. Meschede, A. Rauschenbeutel, Phys. Rev. Lett. 99, 163602 (2007)

    ADS  Article  Google Scholar 

  46. 46.

    Y. Louyer, D. Meschede, A. Rauschenbeutel, Phys. Rev. A 72, 031801 (2005)

    ADS  Article  Google Scholar 

  47. 47.

    J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  48. 48.

    F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Mueller, P. Zoller, W. Li, I. Lesanovsky, New J. Phys. 13, 075014 (2010)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C.T. Schmiegelow.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmiegelow, C., Schmidt-Kaler, F. Light with orbital angular momentum interacting with trapped ions. Eur. Phys. J. D 66, 157 (2012). https://doi.org/10.1140/epjd/e2012-20730-4

Download citation

Keywords

  • Topical issue: High Dimensional Quantum Entanglement. Guest editors: Sonja Franke-Arnold, Alessandra Gatti and Nicolas Treps