Skip to main content
Log in

Linear susceptibilities of a single two-level atom and two two-level atoms inside a coupled resonator waveguide: Green function approach

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, we use the Green function method to determine the linear quantum mechanical susceptibilities of a single two-level atom and two two-level atoms located inside a coupled-resonator optical waveguide (CROW). We first calculate the susceptibility of a single atom in a CROW which has the same form as that of a single atom in free space, except for the modification of the atomic decay rate and the frequency shift. Then, we consider two non-identical, non-interacting two-level atoms inside two separate cavities of the CROW. We find that the susceptibility of this system contains not only the contributions of the two individual atoms, but also the contribution arising from the atom-atom correlation due to the CROW field. This additional contribution leads to an electromagnetically induced transparency-like (EIT-like) phenomenon. Furthermore, we find that the optical response of the atomic systems under consideration can be controlled by tuning the atomic transition frequency. Finally, we study the effects of the dissipation processes, i.e., the spontaneous emission of the atoms and the photon leakage from the CROW, on the optical susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Loudon, S.M. Barnett, J. Phys. B: At. Mol. Opt. Phys. 39, 555 (2006)

    Article  ADS  Google Scholar 

  2. P.W. Milonni, R. Loudon, P. Berman, S.M. Barnett, Phys. Rev. A 77, 043835 (2008)

    Article  ADS  Google Scholar 

  3. D.W. Wang, A.J. Li, L.G. Wang, S.Y. Zhu, M.S. Zubairy, Phys. Rev. A 80, 063826 (2009)

    Article  ADS  Google Scholar 

  4. F.A. Hashmi, M. Abdel-Aty, M.A. Bouchene, J. Mod. Opt. 56, 1260 (2009)

    Article  ADS  MATH  Google Scholar 

  5. P. Berman, R.W. Boyd, P. Milonni, Phys. Rev. A 74, 053816 (2006)

    Article  ADS  Google Scholar 

  6. O. Jedkiewicz, R. Loudon, J. Opt. B: Quantum Semiclass. Opt. 2, 47 (2000)

    Article  ADS  Google Scholar 

  7. A. Melloni, F. Morichetti, M. Martinelli, Opt. Quantum Electron. 35, 365 (2003)

    Article  Google Scholar 

  8. J.E. Heebner, P. Chak, S. Pereira, J.E. Sipe, R.W. Boyd, J. Opt. Soc. Am. B 21, 1713 (2004)

    Article  Google Scholar 

  9. A. Yariv, Y. Xu, R.K. Lee, A. Scherer, Opt. Lett. 24, 711 (1999)

    Article  ADS  Google Scholar 

  10. S. Lan, S. Nishikawa, H. Ishikawa, O. Wada, J. Appl. Phys. 90, 4321 (2001)

    Article  ADS  Google Scholar 

  11. D. Leuenberger, R. Ferrini, R. Houdré, J. Appl. Phys. 95, 806 (2004)

    Article  ADS  Google Scholar 

  12. J.K.S. Poon, J. Scheuer, S. Mookherjea, G.T. Paloczi, Y. Huang, A. Yariv, Opt. Express 11, 2666 (2003)

    Article  ADS  Google Scholar 

  13. J. Scheuer, G.T. Paloczi, J.K.S. Poon, A. Yariv, Opt. Photon. News 16, 36 (2005)

    Article  ADS  Google Scholar 

  14. M.F. Yanik, Sh. Fan, Phys. Rev. Lett. 92, 083901 (2004)

    Article  ADS  Google Scholar 

  15. M.F. Yanik, Sh. Fan, Phys. Rev. A 71, 013803 (2005)

    Article  ADS  Google Scholar 

  16. M.J. Hartmann, F.G.S.L. Brandao, M.B. Plenio, Nat. Phys. 2, 849 (2006)

    Article  Google Scholar 

  17. D.G. Angelakis, M.F. Santos, S. Bose, Phys. Rev. A 76, 031805 (2007)

    Article  ADS  Google Scholar 

  18. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P.M. Petroff, A. Imamoglu, Science 308, 1158 (2005)

    Article  ADS  Google Scholar 

  19. M. Bayindir, B. Temelkuran, E. Ozbay, Phys. Rev. B 61, 855 (2000)

    Article  Google Scholar 

  20. L. Zhou, Y.B. Gao, Z. Song, C.P. Sun, Phys. Rev. A 77, 013831 (2008)

    Article  ADS  Google Scholar 

  21. L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Phys. Rev. Lett. 101, 100501 (2008)

    Article  ADS  Google Scholar 

  22. F.M. Hu, L. Zhou, T. Shi, C.P. Sun, Phys. Rev. A 76, 013819 (2007)

    Article  ADS  Google Scholar 

  23. Y. Chang, Z.R. Gong, C.P. Sun, Phys. Rev. A 83, 013825 (2011)

    Article  ADS  Google Scholar 

  24. L. Zhou, J. Lu, C.P. Sun, Phys. Rev. A 76, 12313 (2007)

    Article  ADS  Google Scholar 

  25. L. Zhou, H. Dong, Y.X. Liu, C.P. Sun, F. Nori, Phys. Rev. A 78, 63827 (2008)

    Article  ADS  Google Scholar 

  26. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (Butterworth, Boston, 1991)

  27. U. Fano, Phys. Rev. 124, 1866 (1961)

    Article  ADS  MATH  Google Scholar 

  28. D.N. Zubarev, Sov. Phys. Usp. 3, 320 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  29. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976)

  30. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

  31. J.D. Jackson, Classical Electrodynamics, 3rd edn. (John Wiley & Sons, 1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Naderi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fani, M., Naderi, M.H. Linear susceptibilities of a single two-level atom and two two-level atoms inside a coupled resonator waveguide: Green function approach. Eur. Phys. J. D 66, 131 (2012). https://doi.org/10.1140/epjd/e2012-20715-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-20715-3

Keywords

Navigation