Skip to main content
Log in

Periodic structures in the Franck-Hertz experiment with neon: Boltzmann equation and Monte-Carlo analysis

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The Franck-Hertz experiment with neon gas is modelled as an idealised steady-state Townsend experiment and analysed theoretically using (a) multi-term solution of Boltzmann equation and (b) Monte-Carlo simulation. Theoretical electron periodic electron structures, together with the ‘window’ of reduced fields in which they occur, are compared with experiment, and it is explained why it is necessary to account for all competing scattering processes in order to explain the observed experimental ‘wavelength’. The study highlights the fundamental flaws in trying to explain the observations in terms of a single, assumed dominant electronic excitation process, as is the case in text books and the myriad of misleading web sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Franck, G. Hertz, Verh. Deutsche Phys. Ges. 16, 457 (1914)

    Google Scholar 

  2. R.A. Serway, C.J. Moses, C.A. Moyer, Modern Physics (Thomson Learning, Belmont, 2005)

  3. G.F. Hanne, Am. J. Phys. 56, 696 (1988)

    Article  ADS  Google Scholar 

  4. R.E. Robson, B. Li, R.D. White, J. Phys. B: At. Mol. Opt. Phys. 33, 507 (2000)

    Article  ADS  Google Scholar 

  5. F. Sigeneger, R. Winkler, R.E. Robson, Contrib. Plasma Phys. 43, 178 (2003)

    Article  ADS  Google Scholar 

  6. G. Rapior, K. Sengstock, V. Baev, Am. J. Phys. 74, 423 (2006)

    Article  Google Scholar 

  7. P. Nicoletopoulos, R.E. Robson, Phys. Rev. Lett. 100, 124502 (2008)

    Article  ADS  Google Scholar 

  8. Leybold physics leaflets: Atomic shell Franck-Hertz experiment p6.2.4.4, http://www.ld-didactic.de/literatur/hb/e/p6/p6243_e.pdf

  9. A. Muller, Nature 157, 119 (1946)

    Article  ADS  Google Scholar 

  10. G. Holst, E. Oosterhuis, Physica 1, 78 (1921)

    Google Scholar 

  11. J. Fletcher, J. Phys. D 18, 221 (1985)

    Article  ADS  Google Scholar 

  12. Yu. B. Golubovskii, A. Yu. Skoblo, C. Wilke, R.V. Kozakov, J. Behnke, V.O. Nekutchaev, Phys. Rev. E 72, 026414 (2005)

    Article  ADS  Google Scholar 

  13. V.I. Kolobov, J. Phys. D39, R487 (2006)

    ADS  Google Scholar 

  14. Yu.B. Golubovskii, A.Yu. Skoblo, C. Wilke, R.V. Kozakov, V.O. Nekuchaev, Plasma Sources Sci. Technol. 18, 045022 (2009)

    Article  ADS  Google Scholar 

  15. S. Dujko, R.D. White, Z.Lj. Petrović, J. Phys. D 41, 245205 (2008)

    Article  ADS  Google Scholar 

  16. L. Boltzmann, Wein. Ber. 66, 275 (1872)

    Google Scholar 

  17. C.S. Wang-Chang, G.E. Uhlenbeck, J. De Boer, in Studies in Statistical Mechanics, edited by J. De Boer, G.E. Uhlenbeck (Wiley, New York, 1964), Vol. II, p. 241

  18. K.F. Ness, R.E. Robson, Phys. Rev. A 34, 2185 (1986)

    Article  ADS  Google Scholar 

  19. R.E. Robson, K.F. Ness, Phys. Rev. A 33, 2068 (1986)

    Article  ADS  Google Scholar 

  20. E.A. Mason, E.W. McDaniel, Transport Properties of Ions in Gases (Wiley, New York, 1988)

  21. S. Chapman, T.G. Cowling, The mathematical theory of non-uniform gases (Cambridge University Press, Cambridge, 1939)

  22. S.L. Lin, R.E. Robson, E.A. Mason, J. Chem. Phys. 71, 3483 (1979)

    Article  ADS  Google Scholar 

  23. B. Li, Hydrodynamic and non-hydrodynamic charged particle swarms, Ph.D. thesis, James Cook University, 1999

  24. B. Li, R.D. White, R.E. Robson, J. Phys. D 35, 2914 (2002)

    Article  Google Scholar 

  25. G. Petrov, R. Winkler, J. Phys. D 30, 53 (1997)

    Article  ADS  Google Scholar 

  26. H. Itoh, T. Musha, J. Phys. Soc. Jpn 15, 1675 (1960)

    Article  ADS  Google Scholar 

  27. S. Bzenić, Z.M. Raspopović, S. Sakadžić, Z.Lj. Petrović, IEEE. Trans. Plasma Sci. 27, 78 (1999)

  28. H.R. Skullerud, J. Phys. D 1, 1567 (1968)

    Article  ADS  Google Scholar 

  29. L.G.H. Huxley, R.W. Crompton, The Drift and Diffusion of Electrons in Gases (Wiley, New York, 1974)

  30. M. Hayashi, private communication, 2000

  31. V. Puech, S. Mizzi, J. Phys. 24, 1974 (1991)

    ADS  Google Scholar 

  32. Z.D. Nikitovic, A.I. Strinic, V.D. Stojanovic, G.N. Malovc, Z.Lj. Petrovic, Radiat. Phys. Chem. 76, 556 (2007)

    Article  ADS  Google Scholar 

  33. F. Sigeneger, R. Winkler, Plasma Chem. Plasma Process. 17, 281 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, R.D., Robson, R.E., Nicoletopoulos, P. et al. Periodic structures in the Franck-Hertz experiment with neon: Boltzmann equation and Monte-Carlo analysis. Eur. Phys. J. D 66, 117 (2012). https://doi.org/10.1140/epjd/e2012-20707-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-20707-3

Keywords

Navigation