Skip to main content
Log in

On the role of mechanical stress in the chemical ordering of nanoalloys

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Metallic alloy clusters at equilibrium display an inhomogeneous stress field which may contribute to the chemical ordering and segregation properties. We use the example of cuboctahedral and icosahedral Au-Pd clusters with the same size to compare these properties in systems displaying moderately and highly inhomogeneous stress fields. Metropolis Monte Carlo simulations in the semi-grand canonical ensemble are used with an empirical potential to predict equilibrium configurations. Pressure maps are used to estimate stress on each atom. It is found that when the stress field is moderately inhomogeneous, ordering is dominantly driven by thermodynamic forces. In icosahedral clusters, ordering is found to be the consequence of a balance where thermodynamic forces and mechanical stress may conflict or reinforce each other. Order-disorder transitions are smoother in the systems with higher stress inhomogeneity and it is conjectured that, in icosahedral clusters, disorder may nucleate in the central core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.M. Muñoz-Flores, B.I. Kharisov, V.M. Jiménez-Pérez, P.E. Martínez, S.T. López, Ind. Eng. Chem. Res. 50, 7705 (2011)

    Article  Google Scholar 

  2. C. Banchini, P.K. Shen, Chem. Rev. 109, 4183 (2009)

    Article  Google Scholar 

  3. V.R. Manikam, K.Y. Cheong, K.A. Razak, Mater. Sci. Eng. 176, 187 (2011)

    Article  Google Scholar 

  4. D.G. Shchukin, D. Radziuk, H. Möhwald, Ann. Rev. Mater. Res. 40, 345 (2010)

    Article  ADS  Google Scholar 

  5. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008)

    Article  Google Scholar 

  6. F. Lequien, J. Creuze, F. Berthier, B. Legrand, Phys. Rev. B 78, 075414 (2008)

    Article  ADS  Google Scholar 

  7. L. Defour, J. Creuze, B. Legrand, Phys. Rev. Lett. 103, 205701 (2009)

    Article  ADS  Google Scholar 

  8. I.S. Atanasov, M. Hou, Eur. Phys. J. D 52, 51 (2009)

    Article  ADS  Google Scholar 

  9. F. Calvo, C. Mottet, Phys. Rev. B 84, 035409 (2011)

    Article  ADS  Google Scholar 

  10. J.H. Los, C. Mottet, G. Tréglia, C. Goyhenex, Phys. Rev. B 84, 180202 (2011)

    Article  ADS  Google Scholar 

  11. D. Cheng, I.S. Atanasov, M. Hou, Eur. Phys. J. D 64, 37 (2011)

    Article  ADS  Google Scholar 

  12. M. Bonarowska, J. Pielaszek, V.A. Semikolenov, Z. Karpinski, J. Catal. 209, 528 (2002)

    Article  Google Scholar 

  13. B. Pawelec, E. Cano-Serrano, J.M. Campos-Martin, R.M. Navarro, S. Thomas, J.L.G. Fierro, Appl. Catal. A 275, 127 (2004)

    Article  Google Scholar 

  14. M.O. Nutt, J.B. Hughes, M.S. Wong, Environ. Sci. Technol. 39, 1346 (2005)

    Article  Google Scholar 

  15. L. Piccolo, A. Piednoir, J.-C. Bertolini, Surf. Sci. 592, (2005)

  16. D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-Espriu, A.F. Carley, A.A. Herzing, M. Watanabe, C.J. Kiely, D.W. Knight, G.J. Hutchings, Science 311, 362 (2006)

    Article  ADS  Google Scholar 

  17. K. Edwards, B. Solsona, E.N. Ndifor, A.F. Carley, A.A. Herzing, C.J. Kiely, G.J. Hutchings, Science 323, 1037 (2009)

    Article  ADS  Google Scholar 

  18. T. Visart de Bocarmé, M. Moors, N. Kruse, I.S. Atanasov, M. Hou, A. Cerezo, G.D.W. Smith, Ultramicroscopy 109, 619 (2009)

    Article  Google Scholar 

  19. L. Piccolo, A. Piednoir, J.-C. Bertolini, Surf. Sci. 600, 4211 (2006)

    Article  ADS  Google Scholar 

  20. C.J. Baddeley, M. Tikhov, C. Hardacre, J.R. Lomas, R.M. Lambert, J. Phys. Chem. 100, 2189 (1996)

    Article  Google Scholar 

  21. M. Chen, D. Kumar, C. Yi, D.W. Goodman, Science 310, 291 (2005)

    Article  ADS  Google Scholar 

  22. M. Chen, K. Luo, T. Wei, Z. Yan, D. Kumar, C. Yi, D.W. Goodman, Catal. Today 117, 37 (2006)

    Article  Google Scholar 

  23. M. Chen, D.W. Goodman, Chin. J. Catal. 29, 1178 (2008)

    Article  Google Scholar 

  24. Y. Pluntke, L.A. Kibler, D.M. Kolb, Chem. Phys. 10, 3684 (2008)

    Article  Google Scholar 

  25. H. Okamoto, T.B. Massalski, J. Phase Equilib. 6, 229 (1985)

    Google Scholar 

  26. A. Nagasawa, Y. Matsuo, J. Kakinoki, J. Phys. Soc. Jpn 20, 1881 (1965)

    Article  ADS  Google Scholar 

  27. Y. Kawasaki, S. Ino, S. Ogawa, J. Phys. Soc. Jpn 30, 1758 (1971)

    Article  ADS  Google Scholar 

  28. V.I. Iveronova, A.A. Katsnel’son, Sov. Phys. Crystallogr. 11, 504 (1967)

    Google Scholar 

  29. M.H.F. Sluiter, C. Colinet, A. Pasturel, Phys. Rev. B 73, 174204 (2006)

    Article  ADS  Google Scholar 

  30. S. Curtarolo, D. Morgan, G. Ceder, Calphad 29, 163 (2005)

    Article  Google Scholar 

  31. I.V. Atanasov, M. Hou, Surf. Sci. 603, 2639 (2009)

    Article  ADS  Google Scholar 

  32. Y. Yamada, A.W. Castelman Jr., J. Chem. Phys. 97, 4543 (1992)

    Article  ADS  Google Scholar 

  33. B. Belić, R.L. Chantry, Z.Y. Li, S.A. Brown, Appl. Phys. Lett. 99, 171914 (2011)

    Article  ADS  Google Scholar 

  34. J.L. Rodríguez-López, J.M. Montejano-Carrizales, M. José-Yacamán, Appl. Surf. Sci. 219, 56 (2003)

    Article  ADS  Google Scholar 

  35. S.C. Hendy, B.D. Hall, Phys. Rev. B 64, 085425 (2001)

    Article  ADS  Google Scholar 

  36. F. Leroy, G. Renaud, A. Letoublon, R. Lazzari, C. Mottet, J. Goniakowski, Phys. Rev. Lett. 95, 185501 (2005)

    Article  ADS  Google Scholar 

  37. C. Mottet, G. Rossi, F. Baletto, R. Ferrando, Phys. Rev. Lett. 95, 035501 (2005)

    Article  ADS  Google Scholar 

  38. P. Müller, C. Mottet, J. Comput. Theor. Nanosci. 4, 316 (2007)

    Google Scholar 

  39. V. Moreno, J. Creuze, F. Berthier, C. Mottet, G. Treglia, B. Legrand, Surf. Sci. 600, 5011 (2006)

    Article  ADS  Google Scholar 

  40. E.E. Zhurkin, M. Hou, J. Phys.: Condens. Matter 12, 6735 (2000)

    Article  ADS  Google Scholar 

  41. T. Van Hoof, M. Hou, Appl. Surf. Sci. 226, 94 (2004)

    Article  ADS  Google Scholar 

  42. T. Van Hoof, M. Hou, Eur. Phys. J. D 29, 33 (2004)

    Article  ADS  Google Scholar 

  43. T. Van Hoof, M. Hou, Phys. Rev. B 72, 115434 (2005)

    Article  ADS  Google Scholar 

  44. F. Baletto, C. Mottet, R. Ferrando, Phys. Relat. Lett. 90, 135504 (2003)

    Article  ADS  Google Scholar 

  45. R.A. Johnson, Phys. Rev. B 41, 9717 (1990)

    Article  ADS  Google Scholar 

  46. S. Takizawa, K. Terakura, T. Mohri, Phys. Rev. B 39, 5792 (1989)

    Article  ADS  Google Scholar 

  47. A.P. Sutton, R.W. Baluffi, Interfaces in Crystalline Materials, monographs on the physics and chemistry of materials (Oxford Science Publications, Clarendon Press, Oxford, 1995), Vol. 51

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, B., Hou, M. On the role of mechanical stress in the chemical ordering of nanoalloys. Eur. Phys. J. D 66, 63 (2012). https://doi.org/10.1140/epjd/e2012-20689-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-20689-0

Keywords

Navigation