Skip to main content
Log in

Quantum discord evolution of three-qubit states under noisy channels

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We investigated the dissipative dynamics of quantum discord for correlated qubits under Markovian environments. The basic idea in the present scheme is that quantum discord is more general, and possibly more robust and fundamental, than entanglement. We provide three initially correlated qubits in pure Greenberger-Horne-Zeilinger (GHZ) or W state and analyse the time evolution of the quantum discord under various dissipative channels such as: Pauli channels σ x , σ y , and σ z , as well as depolarising channels. Surprisingly, we find that under the action of Pauli channel σ x , the quantum discord of GHZ state is not affected by decoherence. For the remaining dissipative channels, the W state is more robust than the GHZ state against decoherence. Moreover, we compare the dynamics of entanglement with that of the quantum discord under the conditions in which disentanglement occurs and show that quantum discord is more robust than entanglement except for phase flip coupling of the three-qubits system to the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  3. B. Bellomo, R. Lo Franco, G. Compagno, Phys. Rev. A 77, 032342 (2008)

    Article  ADS  Google Scholar 

  4. A. Jamróz, J. Phys. A 39, 7727 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  6. A.K. Rajagopal, R.W. Rendell, Phys. Rev. A 66, 022104 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen(De), U. Sen, B. Synak-Radtke, Phys. Rev. A 71, 062307 (2005)

    Article  ADS  Google Scholar 

  8. I. Devetak, Phys. Rev. A 71, 062303 (2005)

    Article  ADS  Google Scholar 

  9. A.R. Usha Devi, A.K. Rajagopal, Phys. Rev. Lett. 100, 140502 (2008)

    Article  Google Scholar 

  10. K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Phys. Rev. Lett. 104, 080501 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Brodutch, D.R. Terno, Phys. Rev. A 81, 062103 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  12. W.H. Zurek, Phys. Rev. A 67, 012320 (2003)

    Article  ADS  Google Scholar 

  13. J. Maziero, H.C. Guzman, L.C. Céleri, M.S. Sarandy, R.M. Serra, Phys. Rev. A 82, 012106 (2010)

    Article  ADS  Google Scholar 

  14. R. Dillenschneider, Phys. Rev. B 78, 224413 (2008)

    Article  ADS  Google Scholar 

  15. A. Shabani, D.A. Lidar, Phys. Rev. Lett. 102, 100402 (2009)

    Article  ADS  Google Scholar 

  16. A. Datta, A. Shaji, C.M. Caves, Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  17. M.S. Sarandy, Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  18. J. Cui, H. Fan, J. Phys. A: Math. Theor. 43, 045305 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Datta, G. Vidal, Phys. Rev. A 75, 042310 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  20. B.P. Lanyon, M. Barbieri, M.P. Almeida, A.G. White, Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  21. G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

  23. H.-P. Breuer, E.-M. Laine, J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  24. F.F. Fanchini, T. Werlang, C.A. Brasil, L.G.E. Arruda, A.O. Caldeira, Phys. Rev. A. 81, 052107 (2010)

    Article  ADS  Google Scholar 

  25. B. Wang, Z.-Y. Xu, Z.-Q. Chen, M. Feng, Phys. Rev. A 81, 014101 (2010)

    Article  ADS  Google Scholar 

  26. Z.-Y. Sun, L. Li, K.-L. Yao, G.-H. Du, J.-W. Liu, B. Luo, N. Li, H.-N. Li, Phys. Rev. A 82, 032310 (2010)

    Article  ADS  Google Scholar 

  27. T. Werlang, S. Souza, F.F. Fanchini, C.J. Villas Boas, Phys. Rev. A 80, 024103 (2009)

    Article  ADS  Google Scholar 

  28. A. Auyuanet, L. Davidovich, Phys. Rev. A 82, 032112 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  29. D.M. Greenberger, M.A. Horne, A. Zeilinger, Bells Theorem, Quantum Theory, Conceptions of the Universe, edited by M. Kafatos (Kluwer, Dordrecht, 1989), p. 69

  30. W. Dür, G. Vidal, J.I. Cirac, Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  31. E. Jung, Mi-Ra Hwang, Y. Hwan Ju, Min-Soo Kim, Sahng-Kyoon Yoo, H. Kim, D. Park, Jin-Woo Son, S. Tamaryan, Seong-Keuck Cha, Phys. Rev. A 78, 012312 (2008)

    Article  ADS  Google Scholar 

  32. M. Siomau, S. Fritzsche, Eur. Phys. J. D 60, 397 (2010)

    Article  ADS  Google Scholar 

  33. L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. A. Datta, A condition for the nullity of quantum discord, arXiv:1003.5256v2

  35. C.C. Rulli, M.S. Sarandy, Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mahdian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahdian, M., Yousefjani, R. & Salimi, S. Quantum discord evolution of three-qubit states under noisy channels. Eur. Phys. J. D 66, 133 (2012). https://doi.org/10.1140/epjd/e2012-20688-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-20688-1

Keywords

Navigation