Skip to main content

Advertisement

Log in

Low energy H production by electron collision with small hydrocarbons

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The production of low-energy H by electron impact with CH4, C2H2, C2H4, C2H6 and C3H8 has been studied within electron energy range 0−20 eV. The dissociative electron attachment and dipolar dissociation (also known as ion pair production) are contributing to formation of H in this energy range. A special ion extraction system for collection of low-energy light ions was used. Low-energy H production rates for all studied molecules are found lower yet similar to those for hydrogen at 14 eV dissociative attachment maximum. A vertical onset of ion yield is observed for the dissociative attachment in CH4, C2H2, and C3H8. The production rate of H through the dipolar dissociation is observed to be high in the case of C2H4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Jacob, J. Nucl. Mat. 337-339, 839 (2005)

    Article  ADS  Google Scholar 

  2. D. Reiter, B. Küppers, R.K. Janev, Phys. Scr. T138, 014014 (2009)

    Article  ADS  Google Scholar 

  3. D.A. Williams, J. Phys.: Conf. Ser. 6, 1 (2005)

    Article  ADS  Google Scholar 

  4. R.P. Wayne, Chemistry of Atmospheres (Oxford University Press, Oxford, 2000)

  5. V. Vuitton, P. Lavvas, R.V. Yelle, M. Galand, A. Wellbrock, G.R. Lewis, A.J. Coates, J.-E. Wahlund, Planet. Space Sci. 57, 1558 (2009)

    Article  ADS  Google Scholar 

  6. M.V. Petrova, F.A. Williams, Combust. Flame 144, 526 (2006)

    Article  Google Scholar 

  7. M.N.R. Ashfold, P.W. May, J.R. Petherbridge, K.N. Rosser, J.A. Smith, Y.A. Mankelevich, N.V. Suetin, Phys. Chem. Chem. Phys. 3, 3471 (2001)

    Article  Google Scholar 

  8. M. Bacal, Nucl. Fusion 46, S250 (2006)

    Article  ADS  Google Scholar 

  9. H. Bruhns, H. Kreckel, K. Miller, M. Lestinsky, B. Seredyuk, W. Mitthumsiri, B.L. Schmitt, M. Schnell, X. Urbain, M.L. Rappaport, C.C. Havener, D.W. Savin, Rev. Sci. Instrum. 81, 013112 (2010)

    Article  ADS  Google Scholar 

  10. N. Harada, E. Herbst, Astrophys. J. 685, 272 (2008)

    Article  ADS  Google Scholar 

  11. M. Allan, S.F. Wong, Phys. Rev. Lett. 41, 1791 (1978)

    Article  ADS  Google Scholar 

  12. L.V. Trepka, H. Neuert, Z. Naturforsch. A 18, 1295 (1963)

    ADS  Google Scholar 

  13. J. Rutkowsky, H. Drost, H.-J. Spangenberg, Ann. Phys. 37, 259 (1980)

    Article  Google Scholar 

  14. P. Rawat, V.S. Prabhudesai, M.A. Rahman, N. Bhargava Ram, E. Krishnakumar, Int. J. Mass Spectrom. 277, 69 (2008)

    Google Scholar 

  15. N. Bhargava Ram, E. Krishnakumar, Chem. Phys. Lett. 511, 22 (2011)

    Article  ADS  Google Scholar 

  16. O. May, J. Fedor, M. Allan, Phys. Rev. A 80, 012706 (2009)

    Article  ADS  Google Scholar 

  17. T.E. Sharp, J.T. Dowell, Int. J. Mass Spectrom. 46, 1530 (1967)

    Google Scholar 

  18. D. Rapp, D.D. Briglia, J. Chem. Phys. 43, 1480 (1965)

    Article  ADS  Google Scholar 

  19. K. Mitsuke, S. Suzuki, T. Imamura, I. Koyano, J. Chem. Phys. 92, 6556 (1990)

    Article  ADS  Google Scholar 

  20. K. Mitsuke, H. Hattori, H. Yoshida, J. Chem. Phys. 99, 6642 (1993)

    Article  ADS  Google Scholar 

  21. R.A. Mackie, A.M. Sands, S.W.J. Scully, D.M.P. Holland, D.A. Shaw, K.F. Dunn, C.J. Latimer, J. Phys. B At. Mol. Opt. Phys. 35, 1061 (2002)

    Article  ADS  Google Scholar 

  22. R.A. Mackie, S.W.J. Scully, A.M. Sands, R. Browning, K.F. Dunn, C.J. Latimer, Int. J. Mass Spectrom. 223-224, 67 (2003)

    Article  Google Scholar 

  23. S. Markelj, I. Čadež, Z. Rupnik, Int. J. Mass Spectrom. 275, 64 (2008)

    Article  ADS  Google Scholar 

  24. I. Čadež, S. Markelj, Z. Rupnik, P. Pelicon, J. Phys.: Conf. Ser. 133, 012029 (2008)

    Article  ADS  Google Scholar 

  25. S. Markelj, I. Čadež, J. Chem. Phys. 134, 124707 (2011)

    Article  ADS  Google Scholar 

  26. D. Rapp, T.E. Sharp, D.D. Briglia, Phys. Rev. Lett. 14, 533 (1965)

    Article  ADS  Google Scholar 

  27. E. Krishnakumar, S. Denifl, I. Čadež, S. Markelj, N.J. Mason, Phys. Rev. Lett. 106, 243201 (2011)

    Article  ADS  Google Scholar 

  28. S.T. Chourou, A.E. Orel, Phys. Rev. A 77, 042709 (2008)

    Article  ADS  Google Scholar 

  29. J.C.J. Thynne, K.A.G. MacNeil, J. Phys. Chem. 75, 2584 (1967)

    Article  Google Scholar 

  30. V.S. Prabhudesai, A.H. Kelkar, D. Nandi, E. Krishnakumar, Phys. Rev. Lett. 95, 143202 (2005)

    Article  ADS  Google Scholar 

  31. H.N. Varambhia, J.J. Munro, J. Tennyson, Int. J. Mass Spectrom. 271, 1 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Čadež.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čadež, I., Markelj, S. & Rupnik, Z. Low energy H production by electron collision with small hydrocarbons. Eur. Phys. J. D 66, 73 (2012). https://doi.org/10.1140/epjd/e2012-20651-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-20651-2

Keywords

Navigation