Skip to main content
Log in

Controllable coupling of distributed qubits within a microtoroidal cavity network

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We propose a scheme to control the coupling between two arbitrary atoms scattered within a quantum network composed of microtoroidal cavities linked by a ring-fibre. The atom-atom effective couplings are induced by pairing of off-resonant Raman transitions. The couplings can be arbitrarily controlled by adjusting classical fields. Compared with the previous scheme [S.B. Zheng, C.P. Yang, F. Nori, Phys. Rev. A 82, 042327 (2010)], the present scheme uses microtoroidal cavities with higher coupling efficiency than Fabry-Perot cavities. Furthermore, the scheme is not only suitable for the short-fibre limit, but also for multiple fibre modes. The added fibre modes can play a positive role, especially when the coupling rate between cavity-mode and fibre-mode is not large. In addition, a wider frequency domain of fibre modes can be used in this scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.I. Cirac, A.K. Ekert, S.F. Huelga, C. Macchiavello, Phys. Rev. A 59, 4249 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  2. E. Knill, R. Laflamme, G.J. Milburn, Nature 409, 46 (2001)

    Article  ADS  Google Scholar 

  3. A. Imamoglu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, A. Small, Phys. Rev. Lett. 83, 4204 (1999)

    Article  ADS  Google Scholar 

  4. J.Q. You, F. Nori, Nature 474, 589 (2011)

    Article  ADS  Google Scholar 

  5. I. Buluta, F. Nori, Science 326, 108 (2009)

    Article  ADS  Google Scholar 

  6. For a review, H. Mabuchi, A.C. Doherty, Science 298, 1372 (2002), and references therein

    Article  ADS  Google Scholar 

  7. S.B. Zheng, G.C. Guo, Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  8. A. Serafini, S. Mancini, S. Bose, Phys. Rev. Lett. 96, 010503 (2006)

    Article  ADS  Google Scholar 

  9. Z. Yin, F. Li, Phys. Rev. A 75, 012324 (2007)

    Article  ADS  Google Scholar 

  10. S.B. Zheng, Appl. Phys. Lett. 94, 154101 (2009)

    Article  ADS  Google Scholar 

  11. S.Y. Ye, Z.B. Yang, S.B. Zheng, A. Serafini, Phys. Rev. A 82, 012307 (2010)

    Article  ADS  Google Scholar 

  12. Y.F. Xiao, Z.F. Han, G.C. Guo, Phys. Rev. A 73, 052324 (2006)

    Article  ADS  Google Scholar 

  13. S.B. Zheng, C.P. Yang, F. Nori, Phys. Rev. A 82, 042327 (2010)

    Article  ADS  Google Scholar 

  14. D.W. Vernooy, A. Furusawa, N.P. Georgiades, V.S. Hchenko, H.J. Kimble, Phys. Rev. A 57, R2293 (1998)

    Article  ADS  Google Scholar 

  15. D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Nature 421, 925 (2003)

    Article  ADS  Google Scholar 

  16. S.M. Spillane, T.J. Kippenberg, O.J. Painter, K.J. Vahala, Phys. Rev. Lett. 91, 043902 (2003)

    Article  ADS  Google Scholar 

  17. S.M. Spillane, T.J. Kippenberg, K.J. Vahala, K.W. Goh, E. Wilcut, H.J. Kimble, Phys. Rev. A 71, 013817 (2005)

    Article  ADS  Google Scholar 

  18. J.Q. You, X. Wang, T. Tanamoto, F. Nori, Phys. Rev. A 75, 052319 (2007)

    Article  ADS  Google Scholar 

  19. R. Raussendorf, H.J. Briegel, Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  20. T. Tanamoto, Y.X. Liu, X. Hu, F. Nori, Phys. Rev. Lett. 102, 100501 (2009)

    Article  ADS  Google Scholar 

  21. J.S. Jin, C.S. Yu, P. Pei, H.S. Song, Phys. Rev. A 81, 042309 (2010)

    Article  ADS  Google Scholar 

  22. T. Aoki, B. Dayan, E. Wilcut, W.P. Bowen, A.S. Parkins, K.J. Vahala, H.J. Kimble, Nature 443, 671 (2006)

    Article  ADS  Google Scholar 

  23. B. Dayan, A.S. Parkins, T. Aoki, E.P. Ostby, K.J. Vahala, H.J. Kimble, Science 319, 1062 (2008)

    Article  ADS  Google Scholar 

  24. T. Aoki, A.S. Parkins, D.J. Alton, C.A. Regal, B. Dayan, E. Ostby, K.J. Vahala, H.J. Kimble, Phys. Rev. Lett. 102, 083601 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, C., Xia, Y. & Song, J. Controllable coupling of distributed qubits within a microtoroidal cavity network. Eur. Phys. J. D 66, 122 (2012). https://doi.org/10.1140/epjd/e2012-20604-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-20604-9

Keywords

Navigation