Skip to main content

Advertisement

Log in

The impulse dielectric behavior of N2 gas in sphere-plane gap

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The focus of this work has been on the pre-breakdown phenomena and the breakdown characteristics of N2 gas in a sphere-plane gap under various impulse voltages. Both electrical and optical experimental investigation methods were used. Following parameters were considered: gas pressure range from 0.2 to 0.6 MPa, electric field utilization factor of the electrode configuration 71%, positive and negative impulse waveforms with the rise time of 500 ns, 1.2 μs and 180 μs. The observed discharge processes before the breakdown through the light emission images by the ICCD camera are in good agreement with the streamer mechanism. Under both polarity stresses, discharges are initially concentrated around the tip of the sphere and later pointing towards the earth electrode. However, negative streamers are thinner and more diffuse. As expected, the breakdown voltages for negative polarity are lower than those for positive polarity regardless of the gas pressure and shape of the applied impulse voltage. The breakdown voltage is increased with shortening the rise time of pulse waveforms. As a substitute for SF6, N2 gas under pressures above 0.3 MPa can reach the standard rated withstand voltage for 24 kV C-GIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abdel-Salam, in High-Voltage Engineering (Marcel Dekker Inc., New York, 2000), p. 124

  2. D. Berg, C. Works, Trans. Am. Inst. Electr. Eng. 77, 820 (1958)

    Google Scholar 

  3. C. Wu, E. Kunhardt, Phys. Rev. A 37, 4396 (1988)

    Article  ADS  Google Scholar 

  4. H. Goshima et al., in Gaseous Dielectrics IX (2001), p. 359

  5. M. Simek, V. Babický, M. Clupek, P. Sunka, J. Phys. D 34, 3185 (2001)

    Article  ADS  Google Scholar 

  6. S. Okabe, S. Yuasa, S. Kaneko, IEEE Trans. Dielectr. Electr. Insul. 15, 407 (2008)

    Article  Google Scholar 

  7. S. Celestin, Z. Bonaventura, B. Zeghondy, A. Bourdon, P. Ségur, J. Phys. D 42, 065203 (2009)

    Article  ADS  Google Scholar 

  8. H. Khatun, A.K. Sharma, P.K. Barhai, Braz. J. Phys. 40, 450 (2010)

    Article  Google Scholar 

  9. O. Farish, D.J. Tedford, J. Phys. D 2, 1555 (1969)

    Article  ADS  Google Scholar 

  10. T.N. Daniel, J. Dutton, F.M. Harris, J. Phys. D 2, 1559 (1969)

    Article  ADS  Google Scholar 

  11. K.E. Crouch, L.C. Whitman, IEEE Trans. Dielectr. Electr. Insul. 2, 114 (1967)

    Google Scholar 

  12. A.A. Kulikovsky, J. Phys. D 27, 2556 (1994)

    Article  ADS  Google Scholar 

  13. A.A. Kulikovsky, J. Phys. D 28, 2483 (1995)

    Article  ADS  Google Scholar 

  14. N. Gherardi, F. Massines, IEEE Trans. Plasma Sci. 29, 536 (2001)

    Article  ADS  Google Scholar 

  15. V.A. Lisovsky, S.D. Yakovin, JETP Lett. 72, 34 (2000)

    Article  ADS  Google Scholar 

  16. H. Toyota, S. Zama, Y. Akamine, S. Matsuoka, K. Hidaka, IEEE Trans. Dielectr. Electr. Insul. 9, 891 (2002)

    Article  Google Scholar 

  17. M. Radmilović-Radjenović, B. Radjenović, J. Phys. D 39, 3002 (2006)

    Article  ADS  Google Scholar 

  18. M. Radmilović-Radjenović, Z.L. Petrović, B. Radjenović, J. Phys.: Conf. Ser. 71, 012007 (2007)

    Article  ADS  Google Scholar 

  19. M. Radmilović-Radjenović, B. Radjenović, IEEE Trans. Plasma Sci. 35, 1223 (2007)

    Article  ADS  Google Scholar 

  20. Y. Qiu, M. Zhang, R. Liu, I. Chalmers, IEEE Trans. Dielectr. Electr. Insul. 4, 575 (1986)

    Google Scholar 

  21. Y. Hoshina, M. Sato, M. Shiiki, M. Hanai, E. Kaneko, IEE Proc.-Sci. Meas. Technol. 1, 153 (2006)

    Google Scholar 

  22. H. Tatsuzo, G. Kazuhiro, K. Teruo, Jpn J. Appl. Phys. 40, 6600 (2001)

    Article  Google Scholar 

  23. H. Kamatani et al., Jpn J. Appl. Phys. Part 2 36, 170 (1997)

    Article  Google Scholar 

  24. Dieter Kind, Kurt Feser, in High-voltage test techniques – Part 2: Test procedure, International Standard IEC 60060-2 (1994), p. 5

  25. Y. Qiu, E. Kuffel, IEEE Trans. Power Appar. Syst. 2, 1445 (1983)

    Article  Google Scholar 

  26. D.M. Xiao, X.G. Li, X. Xu, J. Phys. D 34, 133 (2001)

    Article  ADS  Google Scholar 

  27. D.M. Xiao, L.L. Zhu, X.G. Li, J. Phys. D 33, 145 (2000)

    Article  ADS  Google Scholar 

  28. D.-M. Xiao, L.-L. Zhu, X.-G. Li, Jpn J. Appl. Phys. Part 2 40, 203 (2001)

    Article  Google Scholar 

  29. K. Juhre, E. Kynast, in Proc. of the 14th ISH, 2005, Paper C-01

  30. M. Hikita, S. Ohtsuka, N. Yokoyama, S. Okabe, S. Kaneko, IEEE Trans. Dielectr. Electr. Insul. 15, 243 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. F. Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, X.F., Li, F., Li, X.W. et al. The impulse dielectric behavior of N2 gas in sphere-plane gap. Eur. Phys. J. D 66, 60 (2012). https://doi.org/10.1140/epjd/e2012-20544-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-20544-4

Keywords

Navigation