Skip to main content
Log in

Metastable states of hydrogen: their geometric phases and flux densities

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We discuss the geometric phases and flux densities for the metastable states of hydrogen with principal quantum number n = 2 being subjected to adiabatically varying external electric and magnetic fields. Convenient representations of the flux densities as complex integrals are derived. Both, parity conserving (PC) and parity violating (PV) flux densities and phases are identified. General expressions for the flux densities following from rotational invariance are derived. Specific cases of external fields are discussed. In a pure magnetic field the phases are given by the geometry of the path in magnetic field space. But for electric fields in presence of a constant magnetic field and for electric plus magnetic fields the geometric phases carry information on the atomic parameters, in particular, on the PV atomic interaction. We show that for our metastable states also the decay rates can be influenced by the geometric phases and we give a concrete example for this effect. Finally we emphasise that the general relations derived here for geometric phases and flux densities are also valid for other atomic systems having stable or metastable states, for instance, for He with n = 2. Thus, a measurement of geometric phases may give important experimental information on the mass matrix and the electric and magnetic dipole matrices for such systems. This could be used as a check of corresponding theoretical calculations of wave functions and matrix elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984)

    Article  ADS  MATH  Google Scholar 

  2. B. Simon, Phys. Rev. Lett. 51, 2167 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  3. Geometric Phases in Physics, in Advanced Series in Mathematical Physics, edited by A. Shapere, F. Wilczek (World Scientific, Singapore, 1989), Vol. 5

  4. Geometry, Topology and Physics, in Graduate student series in physics, edited by M. Nakahara (Adam Hilger, Bristol and New York, 1990)

  5. J. Garrison, E. Wright, Phys. Lett. A 128, 177 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  6. S. Massar, Phys. Rev. A 54, 4770 (1996)

    Article  ADS  Google Scholar 

  7. F. Keck, H.J. Korsch, S. Mossmann, J. Phys. A 36, 2125 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. M.V. Berry, Czech. J. Phys. 54, 1039 (2004)

    Article  ADS  Google Scholar 

  9. W. Heiss, Czech. J. Phys. 54, 1091 (2004)

    Article  ADS  Google Scholar 

  10. A.I. Nesterov, F.A. de la Cruz, J. Phys. A: Math. Theor. 41, 485304 (2008)

    Article  Google Scholar 

  11. T. Bergmann, T. Gasenzer, O. Nachtmann, Eur. Phys. J. D 45, 197 (2007)

    Article  ADS  Google Scholar 

  12. T. Bergmann, T. Gasenzer, O. Nachtmann, Eur. Phys. J. D 45, 211 (2007)

    Article  ADS  Google Scholar 

  13. M. DeKieviet, D. Dubbers, C. Schmidt, D. Scholz, U. Spinola, Phys. Rev. Lett. 75, 1919 (1995)

    Article  ADS  Google Scholar 

  14. T. Bergmann, M. DeKieviet, T. Gasenzer, O. Nachtmann, M.I. Trappe, Eur. Phys. J. D 54, 551 (2009)

    Article  ADS  Google Scholar 

  15. M. DeKieviet, T. Gasenzer, O. Nachtmann, M.I. Trappe, Hyperfine Int. 200, 35 (2011)

    Article  ADS  Google Scholar 

  16. I.B. Khriplovich, Parity Nonconservation in Atomic Phenomena (Gordon and Breach, Philadelphia, 1991)

  17. M. Bouchiat, C. Bouchiat, Rep. Prog. Phys. 60, 1351 (1997)

    Article  ADS  Google Scholar 

  18. M.A. Bouchiat, submitted to Il Nuovo Cimento C arXiv:1111.2172v1 [physics.atom-ph] (2011)

  19. M.A. Bouchiat, J. Guena, L. Hunter, L. Pottier, Phys. Lett. B 117, 358 (1982)

    Article  ADS  Google Scholar 

  20. C.S. Wood, S.C. Bennett, D. Cho, B.P. Masterson, J.L. Roberts, C.E. Tanner, C.E. Wieman, Science 275, 1759 (1997)

    Article  Google Scholar 

  21. S.C. Bennett, C.E. Wieman, Phys. Rev. Lett. 82, 2484 (1999)

    Article  ADS  Google Scholar 

  22. M.J.D. Macpherson, K.P. Zetie, R.B. Warrington, D.N. Stacey, J.P. Hoare, Phys. Rev. Lett. 67, 2784 (1991)

    Article  ADS  Google Scholar 

  23. N.H. Edwards, S.J. Phipp, P.E.G. Baird, S. Nakayama, Phys. Rev. Lett. 74, 2654 (1995)

    Article  ADS  Google Scholar 

  24. P.A. Vetter, D.M. Meekhof, P.K. Majumder, S.K. Lamoreaux, E.N. Fortson, Phys. Rev. Lett. 74, 2658 (1995)

    Article  ADS  Google Scholar 

  25. D.M. Meekhof, P. Vetter, P.K. Majumder, S.K. Lamoreaux, E.N. Fortson, Phys. Rev. Lett. 71, 3442 (1993)

    Article  ADS  Google Scholar 

  26. K. Tsigutkin, D. Dounas-Frazer, A. Family, J.E. Stalnaker, V.V. Yashchuk, D. Budker, Phys. Rev. Lett. 103, 071601 (2009)

    Article  ADS  Google Scholar 

  27. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    ADS  Google Scholar 

  28. L.W. Wansbeek, B.K. Sahoo, R.G.E. Timmermans, K. Jungmann, B.P. Das, D. Mukherjee, Phys. Rev. A 78, 050501 (2008)

    Article  ADS  Google Scholar 

  29. O.O. Versolato et al., Phys. Lett. A 375, 3130 (2011)

    Article  ADS  Google Scholar 

  30. A. Schäfer, G. Soff, P. Indelicato, B. Müller, W. Greiner, Phys. Rev. A 40, 7362 (1989)

    Article  ADS  Google Scholar 

  31. L.N. Labzowsky, A.V. Nefiodov, G. Plunien, G. Soff, R. Marrus, D. Liesen, Phys. Rev. A 63, 054105 (2001)

    Article  ADS  Google Scholar 

  32. V.M. Shabaev, A.V. Volotka, C. Kozhuharov, G. Plunien, T. Stöhlker, Phys. Rev. A 81, 052102 (2010)

    Article  ADS  Google Scholar 

  33. F. Ferro, A. Artemyev, T. Stöhlker, A. Surzhykov, Phys. Rev. A 81, 062503 (2010)

    Article  ADS  Google Scholar 

  34. F. Ferro, A. Surzhykov, T. Stöhlker, Phys. Rev. A 83, 052518 (2011)

    Article  ADS  Google Scholar 

  35. R.W. Dunford, R.J. Holt, J. Phys. G: Nucl. Part. Phys. 34, 2099 (2007)

    Article  ADS  Google Scholar 

  36. R.W. Dunford, R.J. Holt, Hyperfine Int. 200, 45 (2011)

    Article  ADS  Google Scholar 

  37. J. Sapirstein, K. Pachucki, K.T. Cheng, Phys. Rev. A 69, 022113 (2004)

    Article  ADS  Google Scholar 

  38. L.N. Labzowsky, A.V. Shonin, D.A. Solovyev, J. Phys. B: At. Mol. Opt. Phys. 38, 265 (2005)

    Article  ADS  Google Scholar 

  39. V.F. Weisskopf, E.P. Wigner, Z. Phys. 63, 54 (1930)

    Article  ADS  Google Scholar 

  40. V.F. Weisskopf, E.P. Wigner, Z. Phys. 65, 18 (1930)

    Article  ADS  Google Scholar 

  41. L. Mandel, E. Wolf, Optical coherence and quantum optics (Cambridge University Press, Cambridge, 1995)

  42. S.M. Barnett, P.M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press Inc., New York, 1997)

  43. P.L. Knight, L. Allen, Phys. Lett. A 38, 99 (1972)

    Article  ADS  Google Scholar 

  44. Y.K. Wang, I.C. Khoo, Opt. Commun. 11, 323 (1974)

    Article  ADS  Google Scholar 

  45. W. Bernreuther, O. Nachtmann, Z. Phys. A 309, 197 (1983)

    Article  ADS  Google Scholar 

  46. O. Nachtmann, Elementary particle physics, concepts and phenomena (Springer, Berlin, 1990)

  47. G.W. Botz, D. Bruss, O. Nachtmann, Ann. Phys. 240, 107 (1995)

    Article  ADS  Google Scholar 

  48. R. Jacob, R.G. Sachs, Phys. Rev. 121, 350 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  49. R.G Sachs, Ann. Phys. 22, 239 (1963)

    Article  ADS  Google Scholar 

  50. H. Flanders, Differential Forms, in Mathematics in Science and Engineering (Academic Press, New York, 1963), Vol. 11

  51. D. Bruss, T. Gasenzer, O. Nachtmann, Eur. Phys. J. direct D2, 1 (1999)

    Google Scholar 

  52. C.E. Loving, P.G.H. Sandars, J. Phys. B 10, 2755 (1977)

    Article  ADS  Google Scholar 

  53. M. DeKieviet, private communication

  54. S.F. Pate, D.W. McKee, V. Papavassiliou, Phys. Rev. C 78, 015207 (2008)

    Article  ADS  Google Scholar 

  55. D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang, Phys. Rev. Lett. 101, 072001 (2008)

    Article  ADS  Google Scholar 

  56. D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang, Phys. Rev. D 80, 034030 (2009)

    Article  ADS  Google Scholar 

  57. M. Alekseev et al. (COMPASS), Phys. Lett. B 693, 227 (2010)

    Article  ADS  Google Scholar 

  58. E. Leader, A.V. Sidorov, D.B. Stamenov, Phys. Rev. D 84, 014002 (2011)

    Article  ADS  Google Scholar 

  59. J. Erler, M.J. Ramsey-Musolf, Phys. Rev. D 72, 073003 (2005)

    Article  ADS  Google Scholar 

  60. U. Jentschura, S. Kotochigova, E. LeBigot, P. Mohr, B. Taylor, The Energy Levels of Hydrogen and Deuterium (National Institute of Standards and Technology, Gaithersburg, MD, 2005)

  61. S.G. Karshenboim, Phys. Rep. 422, 1 (2005)

    Article  ADS  Google Scholar 

  62. E.U. Condon, G.H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, 1963)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Gasenzer, O. Nachtmann or M. -I. Trappe.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasenzer, T., Nachtmann, O. & Trappe, M.I. Metastable states of hydrogen: their geometric phases and flux densities. Eur. Phys. J. D 66, 113 (2012). https://doi.org/10.1140/epjd/e2012-20465-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-20465-2

Keywords

Navigation