Skip to main content
Log in

Off-axial plasma displacement suitable for antihydrogen production in AEgIS experiment

An application of (1, 0) diocotron mode excitation in low magnetic fields

  • Regular Article
  • Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Antihydrogen experiments are currently based on non neutral electron, positron or antiproton plasma manipulation techniques in cylindrical Malmberg-Penning traps. An experimental study of a plasma manipulation technique based on off-axis diocotron displacement is presented. The use of the autoresonant excitation of (1, 0) diocotron mode of pure electron plasma allows a precise positioning of the plasma by moving it across the magnetic field and allows dumping such plasma in a desired angular position. The experimental procedure described here will pave the way to positron loading into an off-axial Penning trap terminated with a positronium converter target as it is proposed for the AEgIS experimental apparatus. The technique was studied over a range of confining magnetic field values and reproduces experimental conditions similar to most of the currently running antihydrogen experiments. The efficiency of the autoresonant excitation – in terms of plasma expansion rate and particle loss – is analyzed, studying the behaviour of electron plasma subjected to large off-axial displacements, showing that this method fulfills the requirements imposed by the AEgIS experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Gabrielse et al. (ATRAP Collaboration), Phys. Rev. Lett. 89, 233401 (2002)

    Article  ADS  Google Scholar 

  2. G.B. Andresen et al. (ALPHA Collaboration), J. Phys. B At. Mol. Opt. Phys. 41, 011001 (2008)

    Article  ADS  Google Scholar 

  3. Y. Enomoto et al., Phys. Rev. Lett. 105, 243401 (2010)

    Article  ADS  Google Scholar 

  4. M. Amoretti et al. (ATHENA Collaboration), Nature 419, 456 (2002)

    Article  ADS  Google Scholar 

  5. G.B. Andresen et al. (ALPHA Collaboration), Phys. Rev. Lett. 105, 013003 (2010)

    Article  ADS  Google Scholar 

  6. G. Gabrielse et al. (ATRAP Collaboration), Phys. Rev. Lett. 106, 073002 (2011)

    Article  ADS  Google Scholar 

  7. M.K. Oberthaler et al., Phys. Rev. A 54, 3165 (1996)

    Article  ADS  Google Scholar 

  8. J.R. Danielson, T.R. Weber, C.M. Surko, Phys. Plasmas 13, 123502 (2006)

    Article  ADS  Google Scholar 

  9. S. Mariazzi et al., Phys. Rev. Lett. 104, 243401 (2010)

    Article  ADS  Google Scholar 

  10. E. Vliegen et al., Phys. Rev. A 76, 023405 (2007)

    Article  ADS  Google Scholar 

  11. G. Testera et al. AEgIS Collaboration), AIP Conf. Proc. 1037, 5 (2008)

    Article  ADS  Google Scholar 

  12. N. Madsen et al. (ATHENA Collaboration), Phys. Rev. Lett. 94, 033403 (2005)

    Article  ADS  Google Scholar 

  13. J. Fajans, E. Gilson, L. Friedland, Phys. Plasmas 6, 4497 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Glinsky et al., Phys. Fluids B 4, 1157 (1992)

    Article  ADS  Google Scholar 

  15. J. Main et al., Phys. Rev. A 57, 1149 (1998)

    Article  ADS  Google Scholar 

  16. R.H. Levy, Phys. Fluids 11, 920 (1968)

    Article  ADS  Google Scholar 

  17. K.S. Fine, C.F. Driscoll, Phys. Plasmas 5, 3 (1998)

    Article  Google Scholar 

  18. K.S. Fine, C.F. Driscoll, J.H. Malmberg, Phys. Rev. Lett. 63, 2232 (1989)

    Article  ADS  Google Scholar 

  19. J.R. Danielson, C.M. Surko, Phys. Plasmas 13, 055706 (2006)

    Article  ADS  Google Scholar 

  20. R.L. Spencer, S.N. Rasband, R.R. Vanfleet, Phys. Fluids B 5, 4267 (1993)

    Article  ADS  Google Scholar 

  21. B.P. Cluggish, C.F. Driscoll, Phys. Rev. Lett. 74, 21 (1995)

    Article  Google Scholar 

  22. S.M. Crooks, T.O. Neil, Phys. Plasmas 2, 2 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Testera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canali, C., Carraro, C., Krasnicky, D. et al. Off-axial plasma displacement suitable for antihydrogen production in AEgIS experiment. Eur. Phys. J. D 65, 499–504 (2011). https://doi.org/10.1140/epjd/e2011-20552-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-20552-x

Keywords

Navigation