Skip to main content
Log in

Adiabatic geometric phase in the nonlinear coherent coupler

  • Regular Article
  • Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We introduce the concept of geometric phase to the nonlinear coherent coupler. With considering the adiabatic change of the distance-dependent phase mismatch, we calculate the adiabatic geometric phase related to the supermode of the coupler analytically. We find that the phase depends on the input light intensity explicitly. In particular, in the low and high intensity limits, the phase equals half of the area on the Poincare sphere enclosed by the evolution loop of the system. At the critical intensity where different supermodes merge, the phase diverges, which can be considered as the signal of a continuous phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ehrenfest, Ann. Phys. 51, 327 (1916)

    Article  Google Scholar 

  2. M. Born, V. Fock, Z. Phys. 51, 165 (1928)

    Article  ADS  Google Scholar 

  3. T. Kato, J. Phys. Soc. Jpn 5, 435 (1950)

    Article  ADS  Google Scholar 

  4. M.V. Berry, Proc. Roy. Soc. A 392, 45 (1984)

    Article  MATH  ADS  Google Scholar 

  5. F. Wilczek, A. Zee, Phys. Rev. Lett. 52, 2111 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  6. Y. Aharonov, J. Anandan, Phys. Rev. Lett. 58, 1593 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  7. J. Samuel, R. Bhandari, Phys. Rev. Lett. 60, 2339 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  8. Geometric Phase in Physics, edited by A. Shapere, F. Wilczek (World Scientific, Singapore, 1989)

  9. A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanziger, The Geometric Phase in Quantum Systems (Springer, New York, 2003)

  10. J. Jones, V. Vedral, A.K. Ekert, C. Castagnoli, Nature 403, 869 (2000)

    Article  ADS  Google Scholar 

  11. G. Falci, R. Fazio, G.M. Palma, J. Siewert, V. Vedral, Nature 407, 355 (2000)

    Article  ADS  Google Scholar 

  12. L.M. Duan, I. Cirac, P. Zoller, Science 292, 1695 (2001)

    Article  ADS  Google Scholar 

  13. Quantum Computation and Quantum Information Theory, edited by C. Macchiavello, G.M. Palma, A. Zeilinger (World Scientific, Singapore, 2000)

  14. G.J. Milburn, J. Corney, E.M. Wright, D.F. Walls, Phys. Rev. A 55, 4318 (1997)

    Article  ADS  Google Scholar 

  15. A. Smerzi, S. Fantoni, S. Giovanazzi, S.R. Shenoy, Phys. Rev. Lett. 79, 4950 (1997)

    Article  ADS  Google Scholar 

  16. B. Wu, Q. Niu, Phys. Rev. A 61, 023402 (2000)

    Article  ADS  Google Scholar 

  17. A. Vardi, J.R. Anglin, Phys. Rev. Lett. 86, 568 (2001)

    Article  ADS  Google Scholar 

  18. J. Liu, L.B. Fu, B.Y. Ou, S.G. Chen, D.I. Choi, B. Wu, Q. Niu, Phys. Rev. A 66, 023404 (2002)

    Article  ADS  Google Scholar 

  19. S. Kohler, F. Sols, Phys. Rev. Lett. 89, 060403 (2002)

    Article  ADS  Google Scholar 

  20. J. Liu, B. Wu, Q. Niu, Phys. Rev. Lett. 90, 170404 (2003)

    Article  ADS  Google Scholar 

  21. H. Pu, P. Maenner, W. Zhang, H.Y. Ling, Phys. Rev. Lett. 98, 050406 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. J. Liu, L.B. Fu, Phys. Rev. A 81, 052112 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. L.B. Fu, J. Liu, Ann. Phys. 325, 2425 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D.N. Christodoulides, Y. Silberberg, Phys. Rev. Lett. 101, 193901 (2008)

    Article  ADS  Google Scholar 

  25. S.M. Jensen, IEEE J. Quantum Electron. QE-18, 1580 (1982)

    Article  ADS  Google Scholar 

  26. G.P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, San Diego, 2001)

  27. A. Yariv, P. Yue, Photonics: Optical Electronics in Modern Communications (Oxford University, New York, 2006)

  28. F. Lederer, S. Darmanyan, A. Kobyakov, in Spatial Optical Solitons, edited by S. Trillo, W.E. Torruellas (Springer-Verlag, New York, 2001)

  29. B. Coutinho dos Santos, C.E.R. Souza, K. Dechoum, A.Z. Khoury, Phys. Rev. A 76, 053821 (2007)

    Article  ADS  Google Scholar 

  30. B. Coutinho dos Santos, K. Dechoum, A.Z. Khoury, Phys. Rev. Lett. 103, 230503 (2009)

    Article  Google Scholar 

  31. N. Mukunda, R. Simon, Ann. Phys. 228, 205 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. L.D. Landau, E.M. Lifshitz, E.M. Pitaevskii, Statistical Physics (Butterworth-Heinemann, New York, 1999)

  33. A.C.M. Carollo, J.K. Pachos, Phys. Rev. Lett. 95, 157203 (2005)

    Article  ADS  Google Scholar 

  34. S.L. Zhu, Phys. Rev. Lett. 96, 077206 (2006)

    Article  ADS  Google Scholar 

  35. A. Hamma, arXiv:quant-ph/0602091 (2006)

  36. F. Plastina, G. Liberti, A. Carollo, Europhys. Lett. 76, 182 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  37. G. Chen, J. Li, J.Q. Liang, Phys. Rev. A 74, 054101 (2006)

    Article  ADS  Google Scholar 

  38. H.T. Cui, K. Li, X.X. Yi, Phys. Lett. A 360, 243 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. L.D. Zhang, L.B. Fu, Europhys. Lett. 93, 30001 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L.D., Fu, L.B. & Liu, J. Adiabatic geometric phase in the nonlinear coherent coupler. Eur. Phys. J. D 65, 557–561 (2011). https://doi.org/10.1140/epjd/e2011-20517-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-20517-1

Keywords

Navigation