Matter rogue wave in Bose-Einstein condensates with attractive atomic interaction

Abstract

We investigate the matter rogue wave in Bose-Einstein condensates with attractive interatomic interaction analytically and numerically. Our results show that the formation of rogue wave is mainly due to the accumulation of energy and atoms toward to its central part; and the decay rate of atoms in unstable matter rogue wave can be effectively controlled by modulating the trapping frequency of external potential. The numerical simulation demonstrate that even a small periodic perturbation with small modulation frequency can induce the generation of a near-ideal matter rogue wave. We also give an experimental protocol to observe this phenomenon in Bose-Einstein condensates.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, New York, 2003)

  2. 2.

    J.L. Roberts, N.R. Claussen, J.P. Burke, C.H. Greene, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 81, 5109 (1998)

    ADS  Article  Google Scholar 

  3. 3.

    J. Stenger, S. Inouye, M.R. Andrews, H.-J. Miesner, D.M. Stamper-Kurn, W. Ketterle, Phys. Rev. Lett. 82, 2422 (1999)

    ADS  Article  Google Scholar 

  4. 4.

    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    ADS  Article  Google Scholar 

  5. 5.

    T. Busch, J.R. Anglin, Phys. Rev. Lett. 87, 010401 (2001)

    ADS  Article  Google Scholar 

  6. 6.

    A.E. Muryshev et al., Phys. Rev. A 60, R2665 (1999)

    ADS  Article  Google Scholar 

  7. 7.

    D.S. Wang, X.H. Hu, W.M. Liu, Phys. Rev. A 82, 023612 (2010)

    ADS  Article  Google Scholar 

  8. 8.

    W.P. Zhang, D.F. Walls, B.C. Sanders, Phys. Rev. Lett. 72, 60 (1994)

    ADS  Article  Google Scholar 

  9. 9.

    D.S. Wang, X.H. Hu, J.P. Hu, W.M. Liu, Phys. Rev. A 81, 025604 (2010)

    ADS  Article  Google Scholar 

  10. 10.

    P.G. Kevrekidis, G. Theocharis, D.J. Frantzeskakis, B.A. Malomed, Phys. Rev. Lett. 90, 230401 (2003)

    ADS  Article  Google Scholar 

  11. 11.

    H. Saito, M. Ueda, Phys. Rev. Lett. 90, 040403 (2003)

    ADS  Article  Google Scholar 

  12. 12.

    Z.X. Liang, Z.D. Zhang, W.M. Liu, Phys. Rev. Lett. 94, 050402 (2005)

    ADS  Article  Google Scholar 

  13. 13.

    V.V. Konotop, P. Pacciani, Phys. Rev. Lett. 94, 240405 (2005)

    ADS  Article  Google Scholar 

  14. 14.

    X.F. Zhang, Q. Yang, J.F. Zhang, X.Z. Chen, W.M. Liu, Phys. Rev. A 77, 023613 (2008)

    ADS  Article  Google Scholar 

  15. 15.

    J. Denschlag et al., Science 287, 97 (2000)

    ADS  Article  Google Scholar 

  16. 16.

    S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, Phys. Rev. Lett. 83, 5198 (1999)

    ADS  Article  Google Scholar 

  17. 17.

    Z.Y. Sun et al., Europhys. Lett. 93, 40004 (2011)

    ADS  Article  Google Scholar 

  18. 18.

    K.E. Strecker, G.B. Partridge, A.G. Truscott, R.G. Hulet, Nature 417, 150 (2002)

    ADS  Article  Google Scholar 

  19. 19.

    L. Khaykovich et al., Science 296, 1290 (2002)

    ADS  Article  Google Scholar 

  20. 20.

    F.K. Abdullaev, A.M. Kamchatnov, V.V. Konotop, V.A. Brazhnyi, Phys. Rev. Lett. 90, 230402 (2003)

    ADS  Article  Google Scholar 

  21. 21.

    V.M. Pérez-Garcĺa, V.V. Konotop, V.A. Brazhnyi, Phys. Rev. Lett. 92, 220403 (2004)

    Article  Google Scholar 

  22. 22.

    B.P. Anderson, P.C. Haljan, C.A. Regal, D.L. Feder, L.A. Collins, C.W. Clark, E.A. Cornell, Phys. Rev. Lett. 86, 2926 (2001)

    ADS  Article  Google Scholar 

  23. 23.

    G. Theocharis, D.J. Frantzeskakis, P.G. Kevrekidis, B.A. Malomed, Y.S. Kivshar, Phys. Rev. Lett. 90, 120403 (2003)

    ADS  Article  Google Scholar 

  24. 24.

    C. Kharif et al., Eur. J. Mech. B, Fluids 22, 603 (2003)

  25. 25.

    P. Müller, Ch. Garrett, A. Osborne, Oceanography 18, 66 (2005)

    Article  Google Scholar 

  26. 26.

    D.H. Peregrine, J. Austral. Math. Soc. 25, 16 (1983)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    A.R. Osborne, Mar. Struct. 14, 275 (2001)

    Article  Google Scholar 

  28. 28.

    K.L. Henderson et al., Wave Motion 29, 341 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    M. Onorato et al., Phys. Rev. Lett. 86, 5831 (2001)

    ADS  Article  Google Scholar 

  30. 30.

    P.A. E.M. Janssen, J. Phys. Oceanogr. 33, 863 (2003)

    MathSciNet  ADS  Article  Google Scholar 

  31. 31.

    M. Onorato, A.R. Osborne, M. Serio, Phys. Rev. Lett. 96, 014503 (2006)

    ADS  Article  Google Scholar 

  32. 32.

    P.K. Shukla, I. Kourakis, B. Eliasson, M. Marklund, L. Stenflo, Phys. Rev. Lett. 97, 094501 (2006)

    ADS  Article  Google Scholar 

  33. 33.

    D.R. Solli et al., Nature 450, 1054 (2007)

    ADS  Article  Google Scholar 

  34. 34.

    D.-I. Yeom et al., Nature 450, 953 (2007)

    ADS  Article  Google Scholar 

  35. 35.

    B. Kibler et al., Nature Phys. 6, 790 (2010)

    ADS  Article  Google Scholar 

  36. 36.

    K. Hammani et al., Opt. Lett. 36, 112 (2011)

    ADS  Article  Google Scholar 

  37. 37.

    A. Chabchoub, N.P. Hoffmann, N. Akhmediev, Phys. Rev. Lett. 106, 204502 (2011)

    ADS  Article  Google Scholar 

  38. 38.

    M. Shatz, H. Punzmann, H. Xia, Phys. Rev. Lett. 104, 104503 (2010)

    ADS  Article  Google Scholar 

  39. 39.

    P.G. Kevrekidis et al., Mod. Phys. Lett. B 18, 173 (2004)

    ADS  Article  Google Scholar 

  40. 40.

    L. Li et al., Opt. Commun. 234, 169 (2004)

    ADS  Article  Google Scholar 

  41. 41.

    Q.Y. Li et al., Opt. Commun. 283, 3361 (2010)

    ADS  Article  Google Scholar 

  42. 42.

    V.N. Serkin, A. Hasegawa, T.L. Belyaeva, Phys. Rev. Lett. 98, 074102 (2007)

    ADS  Article  Google Scholar 

  43. 43.

    Z.Y. Yan, Phys. Lett. A 374, 672 (2010)

    ADS  Article  Google Scholar 

  44. 44.

    N. Akhmediev, J.M. Soto-Crespo, A. Ankiewicz, Phys. Rev. A 80, 043818 (2009)

    ADS  Article  Google Scholar 

  45. 45.

    Yu.A. Bludov, V.V. Konotop, N. Akhmediev, Phys. Rev. A 80, 033610 (2009)

    ADS  Article  Google Scholar 

  46. 46.

    L.D. Carr, J. Brand, Phys. Rev. Lett. 92, 040401 (2004)

    ADS  Article  Google Scholar 

  47. 47.

    L. Salasnich, A. Parola, L. Reatto, Phys. Rev. Lett. 91, 080405 (2003)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Wen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wen, L., Li, L., Li, Z.D. et al. Matter rogue wave in Bose-Einstein condensates with attractive atomic interaction. Eur. Phys. J. D 64, 473–478 (2011). https://doi.org/10.1140/epjd/e2011-20485-4

Download citation

Keywords

  • Soliton
  • Modulation Instability
  • Rogue Wave
  • Feshbach Resonance
  • Bright Soliton