Skip to main content
Log in

Effect of small admixtures of N2, H2 or O2 on the electron drift velocity in argon: experimental measurements and calculations

  • Regular Article
  • Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The electron drift velocity in argon with admixtures of up to 2% of nitrogen, hydrogen or oxygen is measured in a pulsed Townsend system for reduced electric fields ranging from 0.1 Td to 2.5 Td. The results are compared with those obtained by Monte Carlo simulations and from the solution of the electron Boltzmann equation using two different solution techniques: a multiterm method based on Legendre polynomial expansion of the angular dependence of the velocity distribution function and the S n method applied to a density gradient expansion representation of the distribution function. An almost perfect agreement between the results of the three numerical methods and, in general, very good agreement between the experimental and the calculated results is obtained. Measurements in Ar-O2 mixtures were limited by electron attachment to oxygen molecules, which contributes to the measured drift velocity. As a result of this attachment contribution, the bulk drift velocity becomes larger than the flux drift velocity if attachment is more probable for electrons with energy below the mean value and smaller in the opposite case. Attachment also contributes to the negative differential conductivity observed in Ar-O2 mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Cardoso, T. Belmonte, G. Henrion, N. Sadeghi, J. Phys. D 39, 4178 (2006)

    Article  ADS  Google Scholar 

  2. V.-D. Hodoroaba, E.B.M. Steers, V. Hoffmann, K. Wetzig, J. Anal. At. Spectrom. 16, 43 (2001)

    Article  Google Scholar 

  3. E.B.M. Steers, P. Smid, V. Hoffman, Z. Weiss, J. Phys.: Conf. Ser. 133, 012020 (2008)

    Article  ADS  Google Scholar 

  4. B. Fernandez, N. Bordel, C. Perez, R. Pereiro, A. Sanz-Medel, J. Anal. At. Spectrom. 17, 1549 (2002)

    Article  Google Scholar 

  5. B. Fernandez, N. Bordel, R. Pereiro, A. Sanz-Medel, J. Anal. At. Spectrom. 18, 151 (2003)

    Article  Google Scholar 

  6. B. Lange, R. Matschat, H. Kipphardt, Anal. Bioanal. Chem. 389, 2287 (2007)

    Article  Google Scholar 

  7. A. Martin, R. Pereiro, N. Bordel, A. Sanz-Medel, Spectrochim. Acta 63, 692 (2008)

    Article  ADS  Google Scholar 

  8. K. Wagatsuma, Spectrochim. Acta Part B: At. Spectrosc. 56, 465 (2001)

    Article  ADS  Google Scholar 

  9. K. Wagatsuma, K. Hirokawa, Anal. Chim. Acta, 306, 193 (1995)

    Article  Google Scholar 

  10. W. Fischer, A. Naoumidis, H. Nickel, J. Anal. At. Spectrom. 9, 375 (1994)

    Article  Google Scholar 

  11. A.C. Davies, The science and practice of welding, 10th edn. (Cambridge University Press, Cambridge, 2002) Vol. 2

  12. N. Jacobsen, J. Phys. D 25, 783 (1992)

    Article  ADS  Google Scholar 

  13. O. Goossens, E. Dekempeneer, D. Vangeneugden, R. van de Leest, C. Leys, Surf. Coat. Technol. 142-144, 474 (2001)

    Article  Google Scholar 

  14. J. Hauser, S.A. Esenwein, P. Awakowicz, H.U. Steinau, M. Köller, H. Halfmann, Biomed. Instrum. Technol. 45, 75 (2011)

    Article  Google Scholar 

  15. N.A. Dyatko, Y.Z. Ionikh, I.V. Kochetov, D.L. Marinov, A.V. Meshchanov, A.P. Napartovich, F.B. Petrov, S.A. Starostin, J. Phys. D 41, 055204 (2008)

    Article  ADS  Google Scholar 

  16. Yu.Z. Ionikh, A.V. Meshchanov, F.B. Petrov, N.A. Dyatko, A.P. Napartovich, Plasma Phys. Rep. 34, 867 (2008)

    Article  ADS  Google Scholar 

  17. F. Massines, A. Rabehi, P. Decomps, R.B. Gadri, P. Ségur, C. Mayoux, J. Appl. Phys. 83, 2950 (1998)

    Article  ADS  Google Scholar 

  18. X. Yuan, L.L. Raja, IEEE Trans. Plasma Sci. 31, 495 (2003)

    Article  ADS  Google Scholar 

  19. M.-C. Bordage, Doctorat D’Etat thesis, Univ. Paul Sabatier de Toulouse, France, 1995

  20. N.E. Bradbury, R.A. Nielsen, Phys. Rev. 49, 388 (1936)

    Article  ADS  Google Scholar 

  21. F.J. Gordillo-Vázquez, Z. Donkó, Plasma Source. Sci. Technol. 18, 034019 (2009)

    Article  ADS  Google Scholar 

  22. Z. Donkó, Plasma Source. Sci. Technol. 20, 024001 (2011)

    Article  ADS  Google Scholar 

  23. H. Leyh, D. Loffhagen, R. Winkler, Comput. Phys. Commun. 113, 33 (1998)

    Article  MATH  ADS  Google Scholar 

  24. R.D. White, R.E. Robson, K.F. Ness, J. Vac. Sci. Technol. A 16, 316 (1998)

    Article  ADS  Google Scholar 

  25. K. Kumar, H.R. Skullerud, R.E. Robson, Aust. J. Phys. 33, 343 (1980)

    ADS  MathSciNet  Google Scholar 

  26. P. Ségur, M. Yousfi, M.C. Bordage, J. Phys. D 17, 2199 (1984)

    Article  ADS  Google Scholar 

  27. H.R. Skullerud, J. Phys. D 1, 1567 (1968)

    Article  ADS  Google Scholar 

  28. B.M. Penetrante, J.N. Bardsley, L.C. Pitchford, J. Phys. D 18, 1087 (1985)

    Article  ADS  Google Scholar 

  29. N. Pinhão, Z. Donkó, D. Loffhagen, M.J. Pinheiro, E.A. Richley, Plasma Source. Sci. Technol. 13, 719 (2004)

    Article  ADS  Google Scholar 

  30. M. Hayashi, in Plasma Material Science Handbook, (Japan Society for the Promotion of Science, Ohmsha, Ltd. Tokio 1992), pp. 748–766

  31. A.V. Phelps, http://jilawww.colorado.edu/˜avp/

  32. S.A. Lawton, A.V. Phelps, J. Chem. Phys. 69, 1055 (1978)

    Article  ADS  Google Scholar 

  33. A.V. Phelps, L.C. Pitchford, Phys. Rev. A 31, 2932 (1985)

    Article  ADS  Google Scholar 

  34. S.J. Buckman, A.V. Phelps, J. Chem Phys. 82, 4999 (1985)

    Article  ADS  Google Scholar 

  35. W.L. Morgan, J.P. Boeuf, L.C. Pitchford, The Siglo Data base, CPAT and Kinema Software, http://www.siglo-kinema.com

  36. M. Elford, S. Buckman, M. Brunger, Interactions of Photons and Electrons with Molecules (Landolt-Börnstein), edited by Y. Itikawa (Springer, Berlin, 2003), Vol. 17C, Chap. 6.3

  37. L.M. Chanin, A.V. Phelps, M.A. Biondi, Phys. Rev. 128, 219 (1962)

    Article  ADS  Google Scholar 

  38. H. Shimamori, Y. Hatano, Chem. Phys. 21, 187 (1977)

    Article  ADS  Google Scholar 

  39. J.L. Pack, A.V. Phelps, Phys. Rev. 121, 798 (1961)

    Article  ADS  Google Scholar 

  40. Y. Nakamura, M. Kurachi, J. Phys. D 21, 718 (1988)

    Article  ADS  Google Scholar 

  41. A.G. Robertson, Aust. J. Phys. 30, 39 (1977)

    Article  ADS  Google Scholar 

  42. G.N. Haddad, Aust. J. Phys. 36, 297 (1983)

    ADS  Google Scholar 

  43. G.N. Haddad, R.W. Crompton, Aust. J. Phys. 33, 975 (1980)

    ADS  Google Scholar 

  44. A.G. Engelhardt, A.V. Phelps, Phys. Rev. 133, A375 (1964)

    Article  ADS  Google Scholar 

  45. B.-H. Jeon, Y. Nakamura, J. Phys. D 31, 2145 (1998)

    Article  ADS  Google Scholar 

  46. T. Kimura, K. Akatsuka, K. Ohe, J. Phys. D 27, 1664 (1994)

    Article  ADS  Google Scholar 

  47. S. Klagge, S. Pfau, V. Řezčáová, R. Winkler, Beitr. Plasmaphys. 17, 237 (1977)

    Article  ADS  Google Scholar 

  48. T. Kimura, K. Ohe, Jpn J. Appl. Phys. 31, 4051 (1992)

    Article  ADS  Google Scholar 

  49. N.L. Aleksandrov, N.A. Dyatko, I.V. Kochetov, A.P. Napartovich, D. Lo, Phys. Rev. E 53, 2730 (1996)

    Article  ADS  Google Scholar 

  50. S. Dujko, Z.M. Raspopovic, Z.Lj. Petrovic, T. Makabe, IEEE Trans. Plasma Sci. 31, 711 (2003)

    Article  ADS  Google Scholar 

  51. Z.Lj. Petrovic, R.W. Crompton, G.N. Hallad, Aust. J. Phys. 37, 23 (1984)

    ADS  Google Scholar 

  52. R.E. Robson, Aust. J. Phys. 37, 35 (1984)

    ADS  Google Scholar 

  53. M.C. Bordage, P. Ségur, A. Chouki, J. Appl. Phys. 80, 1325 (1996)

    Article  ADS  Google Scholar 

  54. D.L. Mosteller, M.L. Andrews, J.D. Clark, A. Garscadden, J. Appl. Phys. 74, 2247 (1993)

    Article  ADS  Google Scholar 

  55. S.B. Vrhovac, Z.Lj. Petrovic, Phys. Rev. E 53, 4012 (1996)

    Article  ADS  Google Scholar 

  56. A.N. Goyette, Y. Wang, G.J. Fitzpatrick, J. Appl. Phys. 92, 2948 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Stano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stano, M., Pinhão, N., Loffhagen, D. et al. Effect of small admixtures of N2, H2 or O2 on the electron drift velocity in argon: experimental measurements and calculations . Eur. Phys. J. D 65, 489–498 (2011). https://doi.org/10.1140/epjd/e2011-20296-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-20296-7

Keywords

Navigation