The European Physical Journal D

, Volume 63, Issue 3, pp 407–419 | Cite as

Process dynamics and thermodynamics of charged particle beams which remain equipartitioned

Plasma Physics Regular Article

Abstract

This paper examines the process dynamics and thermodynamics of charged particle beams which remain equipartitioned. Considering a high-intensity ion beam in a space-charge dominated regime and with an initially large mismatched RMS beam size, we observe a fast increasing spatial anisotropy of the beam. Since space-charge interactions in a high-intensity linear accelerator can lead to energy equipartition between the degrees of freedom, this anisotropization phenomena suggest a kind of route to equipartition. In this paper we show that the particle-particle resonances and mode-particle resonances lead to the anisotropization of the beam, that is, both the envelope ratio and the emittance ratio are different from one. We propose that this anisotropy is responsible for the beam’s equipartitioning. The results suggest that the beam remains equipartitioned when it exhibits a macroscopic anisotropy, which is characterized by the following properties: the development of an elliptical shape with increasing size along a direction, the presence of a coupling between transversal emittances, halo formation along a preferential direction, stationarity of the temperature and a growth of the entropy in the cascade form. We call the state characterized by these properties as an anisotropic equipartition state.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Jameson, PAC93 Proceedings, IEEE 3926 (1993)Google Scholar
  2. 2.
    J. Lagniel, Nucl. Instrum. Methods 345, 46 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    J. Lagniel, Nucl. Instrum. Methods 345, 405 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    R.L. Gluckstern, Phys. Rev. Lett. 73, 1247 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    T.P. Wangler, K.R. Crandall, R. Ryne, T.S. Wang, Phys. Rev. ST Accel. Beams 1, 084201 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    R.L. Gluckstern, W.H. Cheng, H. Ye, Phys. Rev. Lett. 75, 2835 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    R.L. Gluckstern, W.H. Cheng, S. Kurennoy, H. Ye, Phys. Rev. E 54, 6788 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    Q. Qian, R.C. Davidson, Phys. Rev. E 53, 5349 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    H. Okamoto, M. Ikegami, Phys. Rev. E 55, 4694 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    M. Ikegami, Phys. Rev. E 59, 2330 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    A.V. Fedotov, I. Hofmann, R.L. Gluckstern, H. Okamoto, Phys. Rev. ST Accel. Beams 6, 094201 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    B.W. Montague, CERN-Report No. 68-38, CERN, 1968Google Scholar
  13. 13.
    I. Hofmann, Phys. Rev. E 57, 4713 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    A.V. Fedotov, Nucl. Instrum. Methods 557, 216 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    M. Ikegami, Nucl. Instrum. Methods 435, 284 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    I. Hofmann, J. Qiang, R. Ryne, Phys. Rev. Lett. 86, 2313 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    I. Hofmann , Boine-Frankenheim, Phys. Rev. Lett. 87, 034802 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    G. Franchetti, I. Hofmann, D. Jeon, Phys. Rev. Lett. 88, 254802 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    R.A. Kishek , P.G. O’Shea , M. Reiser, Phys. Rev. Lett. 85, 4514 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    W. Simeoni Jr., F.B. Rizzato, R. Pakter, Phys. Plasmas 13, 063104 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    P.M. Lapostolle , IEEE Trans. Nucl. Sci. NS-18, 1101 (1971)ADSCrossRefGoogle Scholar
  22. 22.
    J.M. Lagniel, S. Nath, EPAC98 Proceedings (1998), Vol. 1118Google Scholar
  23. 23.
    T.P. Wangler, F.W. Guy, I. Hofmann, LINAC86 Proceedings (1986), Vol. 340Google Scholar
  24. 24.
    R.A. Kishek, S. Bernal, P.G.O. Shea, M. Reiser, I. Haber, Nucl. Instrum. Methods 464, 484 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    C.L. Bohn, I.V. Sideris, Phys. Rev. ST Accel. Beams 6, 034203 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    H.E. Kandrup, I.M. Vass, I.V. Sideris, Mon. Not. R. Astron. Soc. 341, 927 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    H.E. Kandrup, C. Siopis, Mon. Not. R. Astron. Soc. 345, 745 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    E.A. Startsev, R.C. Davidson, H. Qin, Phys. Rev. ST Accel. Beams 8, 124201 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    J. Nycander, V.V. Yankov, Phys. Scr. T 63, 174 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    V.V. Yankov, J. Nycander, Phys. Plasmas 4, 2907 (1997)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    M.B. Isichenko, A.V. Gruzinov, P.H. Diamond, P.N. Yushmanov, Phys. Plasmas 3, 1916 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    H.E. Kandrup, Mon. Not. R. Astron. Soc. 299, 1139 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    F.J. Sacherer , IEEE Trans. Nucl. Sci. NS-18, 1105 (1971)ADSCrossRefGoogle Scholar
  34. 34.
    P.M. Lapostolle, CERN AR/Int. SG/65-27, 1965Google Scholar
  35. 35.
    R.C. Davidson, H. Qin, Physics of Intense Charged Particle Beams in High Energy Accelerators (World Scientific, Singapore, 2001)Google Scholar
  36. 36.
    P.M. Lapostolle, A. Lombardi, T.P. Wangler, CERN/PS 93-11 (HI), 1993Google Scholar
  37. 37.
    F. Neri, G. Rangarajan, Phys. Rev. Lett. 64, 1073 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  38. 38.
    A. Dragt, F. Neri, G. Rangarajan, Phys. Rev. A 45, 2572 (1992)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    N. Piovella, A. Bourdier, P. Chaix, D. Iracane, EPAC94 Proceedings (1994), Vol. 1186Google Scholar
  40. 40.
    M. Frigo, S.G. Johnson, Proc. IEEE 93, 216 (2005)CrossRefGoogle Scholar
  41. 41.
    I. Hofmann, G. Franchetti, J. Qiang, R.D. Ryne, EPAC04 Proceedings (2004), Vol. 1960Google Scholar
  42. 42.
    S. Ohnuma, R.L. Gluckstern, IEEE Trans. Nucl. Sci. 32, 2261 (1985)ADSCrossRefGoogle Scholar
  43. 43.
    G. Franchetti, I. Hofmann, M. Aslaninejad, Phys. Rev. Lett. 94, 194801 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    I. Hofmann, G. Franchetti, O. Boine-Frankenheim, Phys. Rev. ST Accel. Beams 6, 024202 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    M. Aslaninejad, I. Hofmann, Phys. Rev. ST Accel. Beams 6, 124202 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    I. Hofmann, PAC97 Proceedings (IEEE, 1997), Vol. 1852Google Scholar
  47. 47.
    R.A. Jameson, IEEE Trans. Nucl. Sci. 28, 2408 (1981)ADSCrossRefGoogle Scholar
  48. 48.
    L.M. Young, PAC97 Proceedings (1997), Vol. 1920Google Scholar
  49. 49.
    I. Hofmann, IEEE Trans. Nucl. Sci. 28, 2399 (1981)ADSCrossRefGoogle Scholar
  50. 50.
    I. Hofmann, G. Franchetti, Phys. Rev. ST Accel. Beams 9, 054202 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    R.L. Gluckstern , A.V Fedotov , Phys. Rev. ST Accel. Beams 2, 054201 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    M. Weiss, CERN/MPS/LIN 73-2, 1973Google Scholar
  53. 53.
    K. Joh, J.A. Nolen, PAC93 Proceedings (IEEE, 1993), Vol. 71Google Scholar
  54. 54.
    G. Franchetti, I. Hofmann, EPAC00 Proceedings (2000), Vol. 1292Google Scholar
  55. 55.
    M. Reiser, Theory and Design of Charged Particle Beams (John Wiley and Sons, Inc., New York, 1994)Google Scholar
  56. 56.
    A.M. Lyapunov, Stability of Motion (Academic Press, New York and London, 1966)Google Scholar
  57. 57.
    S.V. Vaishampayan, K.C. Sharma, Indian J. Pure Appl. Math. 25, 785 (1994)MathSciNetMATHGoogle Scholar
  58. 58.
    D. Bambusi, Physica D 119, 47 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  59. 59.
    M.W. Hirsch, S. Smale, Differential Equations Dynamical System and Linear Algebra (Academic Press, New York, 1974)Google Scholar
  60. 60.
    T.D. Frank, Phys. Rev. ST Accel. Beams 9, 084401 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    R.A. Jameson, R.S. Mills, LANL report LA-UR-79-2541, 1979Google Scholar
  62. 62.
    R.A. Jameson, LANL report LA-UR-81-3073, 1981Google Scholar
  63. 63.
    Y. Elskens, Nucl. Instrum. Methods 561, 129 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    B. Gershgorin, Y.V. Lvov, D. Cai, Phys. Rev. E 75, 046603 (2007)MathSciNetADSCrossRefGoogle Scholar
  65. 65.
    V.E. Zakharov, V.S. Lvov, G. Falkovich, Kolmogorov Spectra of Turbulence (Springer-Verlag, Berlin, 1992)Google Scholar
  66. 66.
    D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136, 101 (1967)ADSGoogle Scholar
  67. 67.
    B.B. Kadomtsev, O.P. Pogutse, Phys. Rev. Lett. 25, 1155 (1970)ADSCrossRefGoogle Scholar
  68. 68.
    R.A. Kishek, C.L. Bohn, I. Haber, P.G.O. Shea, M. Reiser, H.E. Kandrup, PAC01 Proceedings (IEEE, 2001), p. 151Google Scholar
  69. 69.
    N. Brown, M. Reiser, Phys. Plasmas 2, 965 (1995)ADSCrossRefGoogle Scholar
  70. 70.
    M. Seurer, P.-G. Reinhard, C. Toepffer, Nucl. Instrum. Methods 351, 286 (1994)ADSCrossRefGoogle Scholar
  71. 71.
    J. Struckmeier, Particle Accelerators 45, 229 (1994)Google Scholar
  72. 72.
    S. Tremaine, M. Hénon, D. Lynden-Bell, Mon. Not. R. Astron. Soc. 219, 285 (1986)ADSMATHGoogle Scholar
  73. 73.
    J.D. Lawson, P.M. Lapostolle, R.L. Gluckstern, Particle Accelerators 5, 61 (1973)Google Scholar
  74. 74.
    G.G. Howes, Phys. Plasmas 15, 055904 (2008)ADSCrossRefGoogle Scholar
  75. 75.
    C.L. Bohn, J.R. Delayen, Phys. Rev. E 50, 1516 (1994)ADSCrossRefGoogle Scholar
  76. 76.
    P.H. Chavanis, Physica A 361, 81 (2006)MathSciNetADSCrossRefGoogle Scholar
  77. 77.
    S.I. Tzenov, Fermilab-Pub-98/287, FERMILAB (1998)Google Scholar
  78. 78.
    A. Mosnier, U. Ratzinger, Fus. Eng. Des. 83, 1001 (2008)CrossRefGoogle Scholar
  79. 79.
    R.A. Jameson, R. Ferdinand, H. Klein, J. Rathke, J. Sredniawski, M. Sugimoto, J. Nucl. Mater. 329, 193 (2004)ADSCrossRefGoogle Scholar
  80. 80.
    P.A.P. Nghiem, N. Chauvin, O. Delferrière, R. Duperrier, A. Mosnier, D. Uriot, M. Comunian, C. Oliver, Proc. HB2010 (2010), Vol. 309Google Scholar
  81. 81.
    M.K.H. Kiessling, J.L. Lebowitz, Phys. Plasmas 1, 1841 (1994)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.CEA, CEA-Saclay IRFU DSMGif-sur-Yvette CedexFrance

Personalised recommendations