Large atom number dual-species magneto-optical trap for fermionic 6Li and 40K atoms

Abstract

We present the design, implementation and characterization of a dual-species magneto-optical trap (MOT) for fermionic 6Li and 40K atoms with large atom numbers. The MOT simultaneously contains 5.2 × 109 6Li-atoms and 8.0 × 109 40K-atoms, which are continuously loaded by a Zeeman slower for 6Li and a 2D-MOT for 40K. The atom sources induce capture rates of 1.2 × 109 6Li-atoms/s and 1.4 × 109 40K-atoms/s. Trap losses due to light-induced interspecies collisions of ∼65% were observed and could be minimized to ∼10% by using low magnetic field gradients and low light powers in the repumping light of both atomic species. The described system represents the starting point for the production of a large-atom number quantum degenerate Fermi-Fermi mixture.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Proceedings of the International School of Physics Enrico Fermi on Ultracold Fermi Gases, edited by M. Inguscio, W. Ketterle, C. Salomon (Societa Italiana di Fisica, Bologna, Italy, 2006)

  2. 2.

    S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)

    ADS  Article  Google Scholar 

  3. 3.

    R.P. Feynman, Int. J. Theor. Phys. 21, 467 (1982)

    Article  Google Scholar 

  4. 4.

    A.F. Ho, M.A. Cazalilla, T. Giamarchi, Phys. Rev. A 79, 033620 (2009)

    ADS  Article  Google Scholar 

  5. 5.

    D.S. Petrov, G.E. Astrakharchik, D.J. Papoular, C. Salomon, G.V. Shlyapnikov, Phys. Rev. Lett. 99, 130407 (2007)

    ADS  Article  Google Scholar 

  6. 6.

    M.M. Forbes, E. Gubankova, W.V. Liu, F. Wilczek, Phys. Rev. Lett. 94, 017001 (2005)

    ADS  Article  Google Scholar 

  7. 7.

    J. Levinsen, T.G. Tiecke, J.T.M. Walraven, D.S. Petrov, Phys. Rev. Lett. 103, 153202 (2009)

    ADS  Article  Google Scholar 

  8. 8.

    J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, M. Weidemüller, Phys. Rev. Lett. 101, 133004 (2008)

    ADS  Article  Google Scholar 

  9. 9.

    K.-K. Ni, S. Ospelkaus, M.H.G. de Miranda, A. Péer, B. Neyenhuis, J.J. Zirbel, S. Kotochigova, P.S. Julienne, D.S. Jin, J. Ye, to be published

  10. 10.

    M. Aymar, O. Dulieu, J. Chem. Phys. 122, 204302 (2005)

    ADS  Article  Google Scholar 

  11. 11.

    T.G. Tiecke, M.R. Goosen, A. Ludewig, S.D. Gensemer, S. Kraft, S.J.J.M.F. Kokkelmans, J.T.M. Walraven, Phys. Rev. Lett. 104, 053202 (2010)

    ADS  Article  Google Scholar 

  12. 12.

    A. Ridinger, S. Chaudhuri, T. Salez, N. Bouloufa, L. Pruvost, O. Dulieu, F. Chevy, C. Salomon, to be published

  13. 13.

    M. Taglieber, A.-C. Voigt, F. Henkel, S. Fray, T.W. Hänsch, K. Dieckmann, Phys. Rev. A 73, 011402 (2006)

    ADS  Article  Google Scholar 

  14. 14.

    F.M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Kerner, E. Wille, G. Hendl, F. Schreck, R. Grimm, Phys. Rev. A 81, 043637 (2010)

    ADS  Article  Google Scholar 

  15. 15.

    T. Tiecke, Ph.D. thesis, University of Amsterdam, 2009

  16. 16.

    M. Greiner, I. Bloch, T.W. Hänsch, T. Esslinger, Phys. Rev. A 63, 031401 (2001)

    ADS  Article  Google Scholar 

  17. 17.

    U. Eismann, F. Gerbier, C. Canalias, G. Trénec, J. Vigué, F. Chevy, C. Salomon, to be published

  18. 18.

    K.A. Yakimovich, A.G. Mozgovoi, High Temp. 38, 657 (2000)

    Article  Google Scholar 

  19. 19.

    G. Ferrari, M.-O. Mewes, F. Schreck, C. Salomon, Opt. Lett. 24, 151 (1999)

    ADS  Article  Google Scholar 

  20. 20.

    M.-O. Mewes, G. Ferrari, F. Schreck, A. Sinatra, C. Salomon, Phys. Rev. A 61, 011403 (1999)

    ADS  Article  Google Scholar 

  21. 21.

    Z. Hadzibabic, S. Gupta, C.A. Stan, C.H. Schunck, M.W. Zwierlein, K. Dieckmann, W. Ketterle, Phys. Rev. Lett. 91, 160401 (2003)

    ADS  Article  Google Scholar 

  22. 22.

    T.G. Tiecke, S.D. Gensemer, A. Ludewig, J.T.M. Walraven, Phys. Rev. A 80, 013409 (2009)

    ADS  Article  Google Scholar 

  23. 23.

    W.D. Phillips, H. Metcalf, Phys. Rev. Lett. 48, 596 (1982)

    ADS  Article  Google Scholar 

  24. 24.

    H.J. Metcalf, P. van der Straten, Laser cooling and trapping (Springer, Berlin, 1999)

  25. 25.

    A. Joffe, W. Ketterle, A. Martin, D.E. Pritchard, J. Opt. Soc. Am. B 10, 2257 (1993)

    ADS  Article  Google Scholar 

  26. 26.

    N.F. Ramsey, Molecular Beams (Oxford University Press, Oxford, 1986)

  27. 27.

    C.B. Alcock, V.P. Itkin, M.K. Horrigan, Can. Metall. Quart. 23, 309 (1984)

    Article  Google Scholar 

  28. 28.

    K. Dieckmann, R.J.C. Spreeuw, M. Weidemüller, J.T.M. Walraven, Phys. Rev. A 58, 3891 (1998)

    ADS  Article  Google Scholar 

  29. 29.

    J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Yu.B. Ovchinnikov, T. Pfau, Phys. Rev. A 66, 023410 (2002)

    ADS  Article  Google Scholar 

  30. 30.

    J. Catani, P. Maioli, L. De Sarlo, F. Minardi, M. Inguscio, Phys. Rev. A 73, 033415 (2006)

    ADS  Article  Google Scholar 

  31. 31.

    S. Chaudhuri, S. Roy, C.S. Unnikrishnan, Phys. Rev. A 74, 023406 (2006)

    ADS  Article  Google Scholar 

  32. 32.

    A.M. Steane, M. Chowdhury, C.J. Foot, J. Opt. Soc. Am. B 9, 2142 (1992)

    ADS  Article  Google Scholar 

  33. 33.

    A. Derevianko, W.R. Johnson, M.S. Safronova, J.F. Babb, Phys. Rev. Lett. 82, 3589 (2002)

    ADS  Article  Google Scholar 

  34. 34.

    M.S. Santos, P. Nussenzveig, L.G. Marcassa, K. Helmerson, J. Flemming, S.C. Zilio, V.S. Bagnato, Phys. Rev. A 52, R4340 (1995)

    ADS  Article  Google Scholar 

  35. 35.

    U. Schlöder, H. Engler, U. Schünemann, R. Grimm, M. Weidemüller, Eur. Phys. J. D 7, 331 (1999)

    ADS  Article  Google Scholar 

  36. 36.

    G.D. Telles, W. Garcia, L.G. Marcassa, V.S. Bagnato, D. Ciampini, M. Fazzi, J.H. Müller, D. Wilkowski, E. Arimondo, Phys. Rev. A 63, 033406 (2001)

    ADS  Article  Google Scholar 

  37. 37.

    J. Goldwin, S.B. Papp, B. DeMarco, D.S. Jin, Phys. Rev. A 65, 021402 (2002)

    ADS  Article  Google Scholar 

  38. 38.

    V. Dribinski, A. Ossadtchi, V.A. Mandelshtam, H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)

    ADS  Article  Google Scholar 

  39. 39.

    M. Weidemüller, C. Zimmermann, Interactions in Ultracold Gases (Wiley-VCH, Weinheim, 2003)

  40. 40.

    B. Bussery, Y. Achkar, M. Aubert-Frécon, Chem. Phys. 116, 319 (1987)

    Article  Google Scholar 

  41. 41.

    M. Marinescu, H.R. Sadeghpour, Phys. Rev. A 59, 390 (1999)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Ridinger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ridinger, A., Chaudhuri, S., Salez, T. et al. Large atom number dual-species magneto-optical trap for fermionic 6Li and 40K atoms. Eur. Phys. J. D 65, 223–242 (2011). https://doi.org/10.1140/epjd/e2011-20069-4

Download citation

Keywords

  • Atom Number
  • Capture Rate
  • Atomic Beam
  • Imaging Beam
  • Excited State Population