Skip to main content
Log in

High-resolution mass spectrometric study of pure helium droplets, and droplets doped with krypton

  • Topical issue: ISSPIC 15 - Structure and thermodynamics of clusters and nanoalloys
  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Mass spectra of doped and undoped helium droplets are presented. The high resolution of the time-of-flight spectrometer (m/Δm ≅ 5000) makes it possible to fully resolve small helium cluster ions from impurities and to unambiguously identify abundance anomalies in the size distribution of He n +. The yield of He4 + shows the well-known enhancement relative to other small cluster ions when the expansion changes from sub- to supercritical, provided the electron energy exceeds a value of 40 ± 1 eV, the threshold for formation of electronically excited ions. Upon doping with krypton, pure Kr n + cluster ions containing up to 41 Kr atoms are observed. The spectra exhibit abundance anomalies at 13, 16, 19, 22 & 23, 26 and 29, in agreement with spectra obtained by ionization of bare krypton clusters that are formed in neat supersonic beams. Mixed clusters He m Kr+ indicate closure of a solvation shell at m = 12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. J. Gspann, H. Vollmar, J. Chem. Phys. 73, 1657 (1980)

    Article  ADS  Google Scholar 

  2. S. Goyal, D.L. Schutt, G. Scoles, Phys. Rev. Lett. 69, 933 (1992)

    Article  ADS  Google Scholar 

  3. M. Farnik, J. Toennies, J. Chem. Phys. 122, 014307 (2005)

    Article  ADS  Google Scholar 

  4. J.P. Toennies, A.F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004)

    Article  Google Scholar 

  5. H. Buchenau, J.P. Toennies, J. Northby, J. Chem. Phys. 95, 8134 (1991)

    Article  ADS  Google Scholar 

  6. B. von Issendorff, H. Haberland, R. Fröchtenicht, J.P. Toennies, Chem. Phys. Lett. 233, 23 (1995)

    Article  ADS  Google Scholar 

  7. S.D. Bosanac, J.N. Murrell, Chem. Phys. Lett. 291, 64 (1998)

    Article  ADS  Google Scholar 

  8. F. Marinetti, E. Bodo, F.A. Gianturco, E. Yurtsever, Chem. Phys. Chem. 9, 2618 (2008)

    Article  Google Scholar 

  9. V.F. Elesin, N.N. Degtyarenko, N.V. Matveev, A.I. Podlivaev, L.A. Openov, J. Exp. Theor. Phys. 101, 44 (2005)

    Article  ADS  Google Scholar 

  10. K.D. Closser, M. Head-Gordon, J. Phys. Chem. A 114, 8023 (2010)

    Article  Google Scholar 

  11. A. Golov, S. Sekatskii, Z. Phys. D 27, 349 (1993)

    Article  ADS  Google Scholar 

  12. K. von Haeften, T. Laarmann, H. Wabnitz, T. Moller, J. Phys. B 38, S373 (2005)

    Article  ADS  Google Scholar 

  13. D.R. Worsnop, S.J. Buelow, D.R. Herschbach, J. Phys. Chem. 88, 4506 (1984)

    Article  Google Scholar 

  14. M. Lezius, P. Scheier, A. Stamatovic, T.D. Mark, J. Chem. Phys. 91, 3240 (1989)

    Article  ADS  Google Scholar 

  15. W. Miehle, O. Kandler, T. Leisner, O. Echt, J. Chem. Phys. 91, 5940 (1989)

    Article  ADS  Google Scholar 

  16. P.G. Lethbridge, A.J. Stace, J. Chem. Phys. 91, 7685 (1989)

    Article  ADS  Google Scholar 

  17. F. Ferreira da Silva, P. Bartl, S. Denifl, O. Echt, T.D. Märk, P. Scheier, Phys. Chem. Chem. Phys. 11, 9791 (2009)

    Article  Google Scholar 

  18. P.W. Stephens, J.G. King, Phys. Rev. Lett. 51, 1538 (1983)

    Article  ADS  Google Scholar 

  19. B.E. Callicoatt, K. Förde, L.F. Jung, T. Ruchti, K.C. Janda, J. Chem. Phys. 109, 10195 (1998)

    Article  ADS  Google Scholar 

  20. S. Feil, K. Gluch, O. Echt, P. Scheier, T.D. Märk, Int. J. Mass Spectrom. 252, 166 (2006)

    Article  ADS  Google Scholar 

  21. D.S. Peterka, J.H. Kim, C.C. Wang, L. Poisson, D.M. Neumark, J. Phys. Chem. A 111, 7449 (2007)

    Article  Google Scholar 

  22. O. Kandler, T. Leisner, O. Echt, E. Recknagel, Z. Phys. D 10, 295 (1988)

    Article  ADS  Google Scholar 

  23. O. Echt, O. Kandler, T. Leisner, W. Miehle, E. Recknagel, J. Chem. Soc. Faraday Trans. 86, 2411 (1990)

    Article  Google Scholar 

  24. S. Denifl, M. Stano, A. Stamatovic, P. Scheier, T.D. Märk, J. Chem. Phys. 124, 054320 (2006)

    Article  ADS  Google Scholar 

  25. D.A. Arms, R.O. Simmons, M. Schwoerer-Bohning, A.T. Macrander, T.J. Graber, Phys. Rev. Lett. 87, 156402 (2001)

    Article  ADS  Google Scholar 

  26. NIST Chemistry WebBook, 2010

  27. P. Scheier, T.D. Märk, J. Chem. Phys. 87, 5238 (1987)

    Article  ADS  Google Scholar 

  28. M.J. DeLuca, D.M. Cyr, W.A. Chupka, M.A. Johnson, J. Chem. Phys. 92, 7349 (1990)

    Article  ADS  Google Scholar 

  29. A. Ding, J. Hesslich, Chem. Phys. Lett. 94, 54 (1983)

    Article  ADS  Google Scholar 

  30. S. Prasalovich, K. Hansen, M. Kjellberg, V.N. Popok, E.E.B. Campbell, J. Chem. Phys. 123, 084317 (2005)

    Article  ADS  Google Scholar 

  31. M.R. Hoare, Adv. Chem. Phys. 40, 49 (1979)

    Article  Google Scholar 

  32. T.P. Martin, Phys. Rep. 273, 199 (1996)

    Article  ADS  Google Scholar 

  33. I.A. Harris, R.S. Kidwell, J.A. Northby, Phys. Rev. Lett. 53, 2390 (1984)

    Article  ADS  Google Scholar 

  34. M. Lewerenz, B. Schilling, J.P. Toennies, J. Chem. Phys. 102, 8191 (1995)

    Article  ADS  Google Scholar 

  35. A. Mauracher et al., Phys. Chem. Chem. Phys. 37, 8240 (2009)

    Article  Google Scholar 

  36. Y. Ren, V.V. Kresin, J. Chem. Phys. 128, 074303 (2008)

    Article  ADS  Google Scholar 

  37. W.K. Lewis, R.J. Bemish, R.E. Miller, J. Chem. Phys. 123, 141103 (2005)

    Article  ADS  Google Scholar 

  38. W.K. Lewis et al., J. Am. Chem. Soc. 126, 11283 (2004)

    Article  Google Scholar 

  39. D. Bonhommeau, M. Lewerenz, N. Halberstadt, J. Chem. Phys. 128, 054302 (2008)

    Article  ADS  Google Scholar 

  40. S. Vongehr, A.A. Scheidemann, C. Wittig, V.V. Kresin, Chem. Phys. Lett. 353, 89 (2002)

    Article  ADS  Google Scholar 

  41. C.P. Schulz, P. Claas, D. Schumacher, F. Stienkemeier, Phys. Rev. Lett. 92, 013401 (2004)

    Article  ADS  Google Scholar 

  42. J.H. Kim, D.S. Peterka, C.C. Wang, D.M. Neumark, J. Chem. Phys. 124, 214301 (2006)

    Article  ADS  Google Scholar 

  43. B.E. Callicoatt, K. Forde, T. Ruchti, L.L. Jung, K.C. Janda, N. Halberstadt, J. Chem. Phys. 108, 9371 (1998)

    Article  ADS  Google Scholar 

  44. H. Tanuma, J. Sanderson, N. Kobayashi, J. Phys. Soc. Jpn 68, 2570 (1999)

    Article  ADS  Google Scholar 

  45. J. Tiggesbäumker, F. Stienkemeier, Phys. Chem. Chem. Phys. 9, 4748 (2007)

    Article  Google Scholar 

  46. F. Ferreira da Silva et al., Chem. Eur. J. 15, 7101 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Echt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schöbel, H., Bartl, P., Leidlmair, C. et al. High-resolution mass spectrometric study of pure helium droplets, and droplets doped with krypton. Eur. Phys. J. D 63, 209–214 (2011). https://doi.org/10.1140/epjd/e2011-10619-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-10619-1

Keywords

Navigation