Skip to main content
Log in

Theoretical study of the MgAr molecule and its ion Mg+Ar: potential energy curves and spectroscopic constants

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The adiabatic potential energy curves of the low-lying electronic states of the MgAr molecule dissociating into Mg (3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p)+Ar have been investigated. The electronic structure of the Mg-Ar molecule is calculated using [Mg2+] and [Ar] core pseudopotentials complemented by the core polarization operators for both atoms, considering the molecule to be a two-electron system. The derived spectroscopic constants of the ground state and lower excited states are in good agreement with available experimental and theoretical work. In addition, for the purpose of checking the pseudopotential accuracy on a simpler related system, low lying potential energy curves of the single active electron Mg+Ar ion are also reported and the corresponding molecular constants are compared with those in the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Saxon, R.E. Olson, B. Liu, J. Chem. Phys. 67, 2692 (1977)

    Article  ADS  Google Scholar 

  2. B.C. Laskowski, S.R. Langhoff, J.R. Stallcop, J. Chem. Phys. 75, 815 (1981)

    Article  ADS  Google Scholar 

  3. J.P. Gu, G. Hirsch, R.J. Buenker, I.D. Petsalakis, G. Theodorakopoulos, M.B. Huang, Chem. Phys. Lett. 230, 473 (1994)

    Article  ADS  Google Scholar 

  4. J. Sadlej, W.D. Edwards, Int. J. Quant. Chem. 53, 607 (1995)

    Article  Google Scholar 

  5. S.J. Park, Y.S. Lee, G.H. Jeung, Chem. Phys. Lett. 277, 208 (1997)

    Article  ADS  Google Scholar 

  6. J. Ahokas, T. Kiljunen, J. Eloranta, H. Kunttu, J. Chem. Phys. 112, 2420 (2000)

    Article  ADS  Google Scholar 

  7. W. Baylis, J. Chem. Phys. 51, 2665 (1969)

    Article  ADS  Google Scholar 

  8. F. Masnou-Seeuws, M. Philippe, P. Valiron, Phys. Rev. Lett. 41, 395 (1978)

    Article  ADS  Google Scholar 

  9. M. Philippe, F. Masnou-Seeuws, P. Valiron, J. Phys. B 12, 2493 (1979)

    Article  ADS  Google Scholar 

  10. J. Hanssen, R. McCarroll, P. Valiron, J. Phys. B 12, 899 (1979)

    Article  ADS  Google Scholar 

  11. P. Valiron, R. Gayet, R. McCarrol, F. Masnou-Seeuws, M. Philippe, J. Phys. B 12, 53 (1979)

    Article  ADS  Google Scholar 

  12. E. Czuchaj, J. Sienkiwicz, Z. Naturforsch. A 34, 694 (1979)

    ADS  Google Scholar 

  13. R. Düren, G. Moritz, J. Chem. Phys. 73, 5155 (1980)

    Article  ADS  Google Scholar 

  14. R. Düren, E. Hasselbrink, G. Moritz, Z. Phys. A 307, 1 (1982)

    Article  ADS  Google Scholar 

  15. A.C. de Guerra, Ph.D. thesis, University of Orsay, 1982

  16. J. Pascale, J. Vandeplanque, J. Chem. Phys. 60, 2278 (1974)

    Article  ADS  Google Scholar 

  17. J. Pascale, Phys. Rev. A 26, 3709 (1982)

    Article  ADS  Google Scholar 

  18. J. Pascale, Phys. Rev. A 28, 632 (1983)

    Article  ADS  Google Scholar 

  19. E. Czuchaj, F. Rebentrost, H. Stoll, H. Preuss, Chem. Phys. 136, 79 (1989)

    Article  Google Scholar 

  20. M. Ben Hadj El Rhouma, H. Berriche, Z.B. Lakhdar, F. Spiegelman, J. Chem. Phys. 116, 1839 (2002)

    Article  ADS  Google Scholar 

  21. S. Massick, W.H. Breckenridge, J. Chem. Phys. 105, 6154 (1996)

    Article  ADS  Google Scholar 

  22. S. Massick, W.H. Breckenridge, J. Chem. Phys. 105, 9719 (1996)

    Article  ADS  Google Scholar 

  23. S. Massick, W.H. Breckenridge, J. Chem. Phys. 106, 2171 (1997)

    Article  ADS  Google Scholar 

  24. S. Massick, W.H. Breckenridge, Chem. Phys. Lett. 257, 465 (1996)

    Article  ADS  Google Scholar 

  25. R.R. Bennett, J.G. McCaffrey, W.H. Breckenridge, J. Chem. Phys. 92, 2740 (1990)

    Article  ADS  Google Scholar 

  26. A.W.K. Leung, M. Robertson, J. Simons, W.H. Breckenridge, Chem. Phys. Lett. 259, 199 (1996)

    Article  ADS  Google Scholar 

  27. C.W. Bauschlicher, H. Partridge, Chem. Phys. Lett. 239, 241 (1995)

    Article  ADS  Google Scholar 

  28. J.S. Pilgrim, C.S. Yeh, K.R. Berry, M.A. Duncan, J. Chem. Phys. 100, 7945 (1994)

    Article  ADS  Google Scholar 

  29. C.T. Scuriock, J.S. Pilgrim, M.A. Duncan, J. Chem. Phys. 103, 3293 (1995)

    Article  ADS  Google Scholar 

  30. W. Müller, J. Flesch, W. Meyer, J. Chem. Phys. 80, 3297 (1984)

    Article  ADS  Google Scholar 

  31. M. Foucrault, Ph. Millié, J.P. Daudey, J. Chem. Phys. 96, 1257 (1992)

    Article  ADS  Google Scholar 

  32. P. Duplaa, F. Spiegelmann, J. Chem. Phys. 105, 1492 (1996)

    Article  ADS  Google Scholar 

  33. P. Duplaa, F. Spiegelmann, J. Chem. Phys. 105, 1500 (1996)

    Article  ADS  Google Scholar 

  34. J.C. Barthelat, Ph. Durand, Theor. Chim. Acta 38, 283 (1975)

    Article  Google Scholar 

  35. M. Gross, F. Spiegelmann, J. Chem. Phys. 108, 4148 (1998)

    Article  ADS  Google Scholar 

  36. M. Gross, F. Spiegelmann, Eur. Phys. J. D 4, 219 (1998)

    Article  ADS  Google Scholar 

  37. W. Müller, W. Meyer, J. Chem. Phys. 80, 3311 (1984)

    Article  ADS  Google Scholar 

  38. G.S. Fanourgrakis, S.C. Farantos, J. Chem. Phys. 100, 3900 (1996)

    Article  Google Scholar 

  39. F. Spiegelman, L. Maron, W.H. Breckenridge, J.-M. Mestdagh, J.-P. Visticot, J. Chem. Phys. 117, 7534 (2002)

    Article  ADS  Google Scholar 

  40. Y. Ralchenko, A.E. Kramida, J. Reader, NIST ASD Team, NIST Atomic Spectra Database (version 3.1.4) (National Institute of Standards and Technology, Gaithersburg, MD, USA, 2008) http://physics.nist.gov/asd3

  41. J.-M. Mestdagh, P. de Pujo, B. Soep, F. Spiegelman, Chem. Phys. Lett. 471, 22 (2009)

    Article  ADS  Google Scholar 

  42. R.J. LeRoy, J. Chem. Phys. 101, 10217 (1994)

    Article  ADS  Google Scholar 

  43. W.H. Breckenridge, C. Jouvet, B. Soep, in Advances in metal and semiconductor clusters, edited by M. Duncan (JAI Press, Greenwich, 1995), Vol. III, and references therein

  44. A. Kowalski, D.J. Funk, W.H. Breckenridge, Chem. Phys. Lett. 132, 263 (1986)

    Article  ADS  Google Scholar 

  45. K. Hald, P. Jorgensen, W.H. Breckenridge, M. Jaszunski, J. Chem. Phys. 464, 402 (2002)

    Google Scholar 

  46. M. Hliwa, J.-P. Daudey, J. Chem. Phys. 153, 471 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Gaied.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaied, W., Habli, H., Oujia, B. et al. Theoretical study of the MgAr molecule and its ion Mg+Ar: potential energy curves and spectroscopic constants. Eur. Phys. J. D 62, 371–378 (2011). https://doi.org/10.1140/epjd/e2011-10572-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-10572-y

Keywords

Navigation