Skip to main content
Log in

Spin-entanglement in a three electron system produced in double Auger decay

  • Regular Article
  • Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The simultaneous emission of two electrons in photoionization, or in the non-radiative spontaneous decay of an inner-shell vacancy, are two of the best known examples of the failure of the independent-particle model of atoms and molecules. The later of these provides also one of the two competitive processes, following inner-shell photoionization, for producing three flying electrons which can, for example, be used in implementing many protocols hitherto developed in quantum information. The correlation properties of the three-particle system consisting of these two electrons plus the photoelectron are analyzed using methods from quantum information theory. The entanglement of the consequent tripartite spin-state is shown to be completely independent of the mechanism(s) which may be responsible for the emission of these three electronic qubits in two different steps in the absence of spin-orbit interaction. Our analysis shows that the tripartite state formed in the present case is more like a  |W〉  class of states possessing pairwise entanglement. The experimental characterization of these states is fully achieved merely by the measurements of the energies of three flying electrons, without requiring any entanglement witness or other similar protocols hitherto developed in quantum information. Changes in these entanglement properties of a tripartite state of electronic qubits on the inclusion of the spin-orbit interaction have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. VUV- and Soft X-Ray Photoionization, edited by U. Becker, D.A. Shirley (Plenum, New York, 1996)

  2. N.M. Kabachnik, S. Fritzsche, A.N. Grum-Grzhimailo, M. Meyer, K. Ueda, Phys. Rep. 451, 155 (2007)

    Article  ADS  Google Scholar 

  3. U. Becker, B. Langer, Nucl. Instrum. Methods. A601, 78 (2009)

    ADS  Google Scholar 

  4. N. Chandra, R. Ghosh, Phys. Rev. A 70, R060306 (2004)

    Article  ADS  Google Scholar 

  5. N. Chandra, R. Ghosh, Phys. Rev. A 74, 052329 (2006)

    Article  ADS  Google Scholar 

  6. R. Ghosh, N. Chandra, Radiat. Phys. Chem. 75, 1808 (2006)

    Article  ADS  Google Scholar 

  7. R. Ghosh, N. Chandra, S. Parida, Eur. Phys. J. Special Top. 169, 117 (2009)

    Article  ADS  Google Scholar 

  8. S. Parida, N. Chandra, Phys. Lett. A 373, 1852 (2009)

    Article  ADS  MATH  Google Scholar 

  9. S. Parida, N. Chandra, Phys. Rev. A 79, 062501 (2009)

    Article  ADS  Google Scholar 

  10. E. Schrödinger, Naturwissenschaften 48, 807 (1935)

    Article  Google Scholar 

  11. E. Schrödinger, Naturwissenschaften 49, 823 (1935)

    Article  Google Scholar 

  12. E. Schrödinger, Naturwissenschaften 49, 844 (1935); English translation in Proc. Camb. Phil. Soc. 31, 555 (1935)

    Article  Google Scholar 

  13. O. Günhe, G. Tóth, Phys. Rep. 474, 1 (2009)

    Article  MathSciNet  Google Scholar 

  14. J. Hald, J.I. Sørensen, C. Schori, E.S. Polzik, Phys. Rev. Lett. 83, 1319 (1999)

    Article  ADS  Google Scholar 

  15. O. Mandel, M. Greiner, A. Widera, T. Rom, T. Hänsch, I. Bloch, Nature 425, 937 (2003)

    Article  ADS  Google Scholar 

  16. S. Ghosh, T.F. Rosenbaum, G. Aeppli, S.N. Coopersmith, Nature 425, 48 (2003)

    Article  ADS  Google Scholar 

  17. V. Vedral, Nature 425, 28 (2003)

    Article  ADS  Google Scholar 

  18. M. Murao, D. Jonathan, M.B. Plenio, V. Vederal, Phys. Rev. A 59, 156 (1999)

    Article  ADS  Google Scholar 

  19. C.H. Bennett, C. Brassard, C. Crepau, R. Juzsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  21. C.H. Bennett, C. Brassard, C. Crepau, N.W. Mermin, Phys. Rev. Lett. 68, 557 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. C. Cabrillo, J.I. Cirac, P. García-Fernández, P. Zoller, Phys. Rev. A 59, 1025 (1999)

    Article  ADS  Google Scholar 

  23. Z.J. Deng, M. Feng, K.L. Gao, Phys. Rev. A 75, 024302 (2007)

    Article  ADS  Google Scholar 

  24. W. Son, M.S. Kim, J. Lee, D. Ahn, J. Mod. Opt. 49, 1739 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. P.J. dos Reis, S.S. Sharma, Phys. Rev. A 79, 012326 (2009)

    Article  ADS  Google Scholar 

  26. H.-Fu. Wang, X.-Q. Shao, Y.-F. Zhao, S. Zhang, K.-H. Yeon, J. Phys. B 42, 175506 (2009)

    Article  ADS  Google Scholar 

  27. XuBo Zou, K. Pahlke, W. Mathis, Phys. Rev. A 68, 024302 (2003)

    Article  ADS  Google Scholar 

  28. XuBo Zou, K. Pahlke, W. Mathis, Phys. Rev. A 69, 052314 (2004)

    Article  ADS  Google Scholar 

  29. T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  30. M.P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S.P. Walborn, P.H.S. Ribeiro, L. Davodovich, Science 316, 579 (2007)

    Article  ADS  Google Scholar 

  31. O.J. Farias, C.L. Latune, S.P. Walborn, L. Davodovich, P.H.S. Ribeiro, Science 324, 1414 (2009)

    Article  ADS  Google Scholar 

  32. V.B. Bragnisky, F.Y. Khalili, Quantum Measurement (Cambridge University Press, Cambridge, England, 1992)

  33. C.M. Caves, K.S. Thorn, R.W.P. Drever, V.D. Sandberg, M. Zimmermann, Rev. Mod. Phys. 52, 341 (1980)

    Article  ADS  Google Scholar 

  34. D. Loss, D.P. DiVicenzo, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  35. N. Chandra, M. Chakraborty, J. Phys. B 35, 2219 (2002)

    Article  ADS  Google Scholar 

  36. N. Chandra, R. Ghosh, Phys. Rev. A 69, 012315 (2004)

    Article  ADS  Google Scholar 

  37. S. Koike, H. Takahashi, H. Yonezawa, N. Takei, S.L. Braunstein, T. Aoki, A. Furusawa, Phys. Rev. Lett. 96, 060504 (2006)

    Article  ADS  Google Scholar 

  38. P. Auger, Commn. Royal Acad. Sci. Paris 177, 169 (1923)

    Google Scholar 

  39. P. Auger, Commn. Royal Acad. Sci. Paris 178, 929 (1924)

    Google Scholar 

  40. P. Auger, Commn. Royal Acad. Sci. Paris 178, 1535 (1924)

    Google Scholar 

  41. P. Auger, J. Phys. Radium 6, 205 (1925)

    Article  Google Scholar 

  42. P. Auger, Commn. Royal Acad. Sci. Paris 182, 776 (1926)

    Google Scholar 

  43. T.A. Carlson, M.O. Krause, Phys. Rev. Lett. 14, 390 (1965)

    Article  ADS  Google Scholar 

  44. T.A. Carlson, M.O. Krause, Phys. Rev. Lett. 17, 1079 (1966)

    Article  ADS  Google Scholar 

  45. L. Journel, R. Guillemin, A. Haouas, P. Lablanquie, F. Penent, J. Palaudoux, L. Andric, M. Simon, D. Ceolin, T. Kaneyasu, J. Viefhaus, M. Braune, W.B. Li, C. Elkharrat, F. Catoire, J.C. Houver, D. Dowek, Phys. Rev. A 77, 042710 (2008)

    Article  ADS  Google Scholar 

  46. T.A. Carlson, M.O. Krause, Phys. Rev. 140, A1057 (1965)

    Article  ADS  Google Scholar 

  47. T.A. Carlson, M.O. Krause, Phys. Rev. 140, A1655 (1965)

    Article  Google Scholar 

  48. T. Pattard, T. Schneider, J.M. Rost, J. Phys. B 36, L189 (2003)

    Article  ADS  Google Scholar 

  49. J.A.R. Samson, Phys. Rev. Lett. 65, 2861 (1990)

    Article  ADS  Google Scholar 

  50. T. Pattard, J. Burgdörfer, Phys. Rev. A 64, 042720 (2001)

    Article  ADS  Google Scholar 

  51. J. Colgan, M.S. Pindzola, J. Phys. B 37, 1153 (2004)

    Article  ADS  Google Scholar 

  52. Y. Hikosaka, P. Lablanquie, F. Penent, P. Selles, T. Kaneyasu, E. Shigemasa, J.H.D. Eland, K. Ito, Phys. Rev. A 80, R031404 (2009)

    Article  ADS  Google Scholar 

  53. W. Dür, J.I. Cirac, R. Tarrach, Phys. Rev. Lett. 83, 3562 (1999)

    Article  ADS  Google Scholar 

  54. M. Weissbluth, Atoms and Molecules (Academic, New York, 1978)

  55. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, 2nd edn. (Benjamin Cummings, New York, 2003)

  56. G. Breit, H.A. Bethe, Phys. Rev. 93, 888 (1954)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. J. Kessler, Polarized Electrons (Springer, New York, 1985)

  58. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1974)

  59. V.L. Jacobs, J. Phys. B 5, 2257 (1972)

    Article  ADS  Google Scholar 

  60. K. Blum, Density Matrix Theory and Applications, 2nd edn. (Plenum, New York, 1998)

  61. N. Chandra, Chem. Phys. 108, 301 (1986)

    Article  ADS  Google Scholar 

  62. T. Åberg, G. Howat, Handbuch der Physik 31, 469 (1982)

    Article  Google Scholar 

  63. M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G.M. D’Ariano, C. Macchiavello, Phys. Rev. Lett. 91, 227901 (2003)

    Article  ADS  Google Scholar 

  64. M. Seevinck, Jos Uffink, Phys. Rev. A 78, 032101 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  65. W. Dür, J.I. Cirac, Phys. Rev. A 61, 042314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  66. J.K. Korbicz, J.I. Cirac, M. Lewenstein, Phys. Rev. Lett. 95, 120502 (2005)

    Article  ADS  Google Scholar 

  67. J.K. Korbicz, O. Gühne, M. Lewenstein, H. Haffner, C.F. Roos, R. Blatt, Phys. Rev. A 74, 052319 (2006)

    Article  ADS  Google Scholar 

  68. G. Tóth, C. Knapp, O. G ühne, H.J. Briegel, Phys. Rev. Lett. 99, 250405 (2007)

    Article  ADS  Google Scholar 

  69. S.S. Sharma, N.K. Sharma, Phys. Rev. A 76, 012326 (2007)

    Article  ADS  Google Scholar 

  70. S.S. Sharma, N.K. Sharma, Phys. Rev. A 77, 042117 (2008)

    Article  ADS  Google Scholar 

  71. S.S. Sharma, N.K. Sharma, Phys. Rev. A 78, 012113 (2008)

    Article  ADS  Google Scholar 

  72. A. Peres, Phys. Rev. Lett. 77, 1413 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  73. P. Horodecki, Phys. Lett. A 232, 233 (1997)

    Article  MathSciNet  Google Scholar 

  74. W. Dür, Phys. Rev. A 63, 020303 (2001)

    Article  ADS  Google Scholar 

  75. C. Sabin, G. Garcia-Alcaine, Eur. Phys. J. D 48, 435 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  76. R.F. Werner, Phys. Rev. A 40, 4277 (1988)

    Article  ADS  Google Scholar 

  77. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  78. V. Coffman, J. Kundu, W.K. Wootters, Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  79. Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments, edited by G. Alber, T. Berth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, A. Zeilinger (Springer, Berlin, 2001)

  80. Bell’s Theorem, quantum Theory, and Conceptions of the Universe, edited by D.M. Greenberger, M. Horne, A. Zeilinger, M. Kafatos (Kluwer, Dordrecht, 1989)

  81. D.M. Greenberger, M.A. Horne, A. Shimony, A. Zeilinger, Am. J. Phys. 58, 1131 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  82. R. Lohmayer, A. Osterloch, J. Siewert, A. Uhlmann, Phys. Rev. Lett. 97, 260502 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  83. D. Bruß, Phys. Rev. A 60, 4344 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  84. J. Viefhaus, in X-Ray Inner-Shell Processes, AIP Conf. Proc. 652, 307 (2003)

  85. J. Viefhaus, S. Cvejanović, B. Langer, T. Lischke, G. Prümper, D. Rolles, A.V. Golovin, A.N. Grum-Grzhimailo, N.M. Kabachnik, U. Becker, Phys. Rev. Lett. 92, 083001 (2001)

    Article  ADS  Google Scholar 

  86. J. Viefhaus, A.N. Grum-Grzhimailo, N.M. Kabachnik, U. Becker, J. Electron Spectrosc. Relat. Phenomena 141, 121 (2004)

    Article  Google Scholar 

  87. J. Viefhaus, M. Braune, S. Korica, A. Reinkoster, D. Rolles, U. Becker, J. Phys. B 38, 3885 (2005)

    Article  ADS  Google Scholar 

  88. S. Osmekhin, M. Huttula, S. Urpelainen, H. Aksela, H. Aksela, J. Phys. B 41, 035006 (2008)

    Article  ADS  Google Scholar 

  89. W. Dür, G. Vidal, J.I. Cirac, Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  90. V. Scarani, N. Gisin, J. Phys. A 34, 6043 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  91. M. Koashi, V. Buřek, N. Imoto, Phys. Rev. A 62, 050302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  92. The Physics of quantum Information, edited by D. Bouwmeester, A.K. Ekert, A. Zeilinger (Springer-Verlag, Berlin, 2000)

  93. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2003)

  94. V. Schmidt, in X-Ray and Inner- shell Processes, edited by T.A. Carlson, M.O. Krause, S.T. Manson, AIP Conf. Proc. (AIP, New York, 1990), No. 215, p. 559

  95. J.H. McGuire, Adv. At. Mol. Phys. 29, 217 (1992)

    Google Scholar 

  96. J.S. Briggs, V. Schmidt, J. Phys. B 33, R1 (2000)

    Article  ADS  Google Scholar 

  97. M. Rotenberg, R. Bivis, N. Metropolis, J.K. Wooten, Jr., The 3-j and 6-j Symbols (The Technology Press, MIT, Massachusetts, 1959)

  98. A. de Shalit, I. Talmi, Nuclear Shell Theory (Academic, New York, 1963)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chandra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parida, S., Chandra, N. & Ghosh, R. Spin-entanglement in a three electron system produced in double Auger decay. Eur. Phys. J. D 65, 303–329 (2011). https://doi.org/10.1140/epjd/e2011-10568-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-10568-7

Keywords

Navigation