Skip to main content
Log in

Negative ion formation and evolution in atmospheric pressure corona discharges between point-to-plane electrodes with arbitrary needle angle

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The change in the distribution pattern of negative ions HO, NO\(_{x}^{-}\) and CO\(_{x}^{-}\) observed on arbitrary point-to-plane electrode configuration has been investigated by varying the angle of needle to the plane electrode, under atmospheric pressure corona discharge conditions. The stationary inhomogeneous electric field distributions between the point-to-plane electrodes with arbitrary needle angle were calculated. The experimental and theoretical results obtained suggested that the negative ion evolutions progress along field lines established between the electrodes with arbitrary configurations and the resulting terminal ion formation on a given field line is attributable to the electric field strength on the needle tip surface where the field line arose. The NO\(_{x}^{-}\) and CO\(_{x}^{-}\) ions were dominantly produced on the field lines arising from the needle tip apex region with the highest electric field strength, while the field lines emanating from the tip peripheral regions with lower field strength resulted in the formation of the HO ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.B. Cody, J.A. Laramee, H.D. Durst, Anal. Chem. 77, 2297 (2005)

    Article  Google Scholar 

  2. C.N. McEwen, R.G. McKay, B.S. Larsen, Anal. Chem. 77, 7826 (2005)

    Article  Google Scholar 

  3. K. Jorabchi, M.S. Westphall, L.M. Smith, J. Am. Soc. Mass Spectrom. 19, 833 (2008)

    Article  Google Scholar 

  4. F. Yu, R.P. Turco, Geophys. Res. Lett. 27, 883 (2000)

    Article  ADS  Google Scholar 

  5. F. Yu, R.P. Turco, J. Geophys. Res. 106, 4797 (2001)

    Article  ADS  Google Scholar 

  6. A.B. Shekhter, R.K. Kabisov, A.V. Pekshev, N.P. Kozlov, Y.L. Perov, Bull. Exp. Biol. Med. 126, 829 (1998)

    Article  Google Scholar 

  7. A.S. Grigoryan, A.I. Grudyanov, O.A. Frolova, Z.P. Antipova, A.I. Yerokhin, A.B. Shekhter, A.V. Pekshev, Stomatology 1, 80 (2001)

    Google Scholar 

  8. I. Digel, A.T. Artmann, K. Nishikawa, M. Cook, E. Kurulgan, G.M. Artmann, Med. Biol. Eng. Comput. 43, 800 (2005)

    Article  Google Scholar 

  9. G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets, A. Fridman, Plasma Processes Polym. 5, 503 (2008)

    Article  Google Scholar 

  10. M. Pavlik, J.D. Skalny, Rapid Commun. Mass Spectrom. 11, 1757 (1997)

    Article  Google Scholar 

  11. J.D. Skalny, T. Mikoviny, S. Matejcik, N.J. Mason, Int. J. Mass Spectrom. 233, 317 (2004)

    Article  ADS  Google Scholar 

  12. K. Turney, W.W. Harrison, Spectrochim. Acta B 61, 634 (2006)

    Article  ADS  Google Scholar 

  13. K. Nagato, Y. Matsui, T. Miyata, T. Yamauchi, Int. J. Mass Spectrom. 248, 142 (2006)

    Article  ADS  Google Scholar 

  14. A. Good, D.A. Durden, P. Kebarle, J. Chem. Phys. 52, 212 (1970)

    Article  ADS  Google Scholar 

  15. A. Good, D.A. Durden, P. Kebarle, J. Chem. Phys. 52, 222 (1970)

    Article  ADS  Google Scholar 

  16. F.C. Fehsenfeld, E.E. Ferguson, J. Chem. Phys. 61, 3181 (1974)

    Article  ADS  Google Scholar 

  17. M.M. Shahin, Appl. Opt. Suppl. 3, 106 (1969)

    Google Scholar 

  18. P.S. Gardiner, J.D. Craggs, J. Phys. D 10, 1003 (1977)

    Article  ADS  Google Scholar 

  19. C.A.M. de Vries, F.J. de Hoog, D.C. Sharam, Proceedings of the Sixth ISPC (Montreal, 1983), p. 317

  20. J.D. Skalny, Acta Phys. Univ. Comen. 28, 161 (1987)

    Google Scholar 

  21. B. Gravendeel, F.J. de Hoog, J. Phys. B: At. Mol. Phys. 20, 6337 (1987)

    Article  ADS  Google Scholar 

  22. K. Sekimoto, M. Takayama, Int. J. Mass Spectrom. 261, 38 (2007)

    Article  ADS  Google Scholar 

  23. K. Sekimoto, M. Takayama, Eur. Phys. J. D 50, 297 (2008)

    Article  ADS  Google Scholar 

  24. M.M. Shahin, J. Chem. Phys. 45, 2600 (1966)

    Article  ADS  Google Scholar 

  25. B. Held, R. Peyrous, Czech. J. Phys. 49, 301 (1999)

    Article  ADS  Google Scholar 

  26. W.W. Lozier, Phys. Rev. 46, 268 (1934)

    Article  ADS  Google Scholar 

  27. L.M. Chanin, A.V. Phelps, M.A. Biondi, Phys. Rev. 128, 219 (1962)

    Article  ADS  Google Scholar 

  28. F.C. Fehsenfeld, E.E. Ferguson, D.K. Bohme, Planet. Space Sci. 17, 1759 (1969)

    Article  ADS  Google Scholar 

  29. N.G. Adams, D.K. Bohme, D.B. Dunkin, F.C. Fehsenfeld, E.E. Ferguson, J. Chem. Phys. 52, 3133 (1970)

    Article  ADS  Google Scholar 

  30. F.C. Fehsenfeld, C.J. Howard, A.L. Schmeltekopf, J. Chem. Phys. 63, 2835 (1975)

    Article  ADS  Google Scholar 

  31. Y. Luo, in Handbook of Chemistry and Physics, edited by D.R. Lide, 88th edn. (CRC Press, Boca Raton, 2007)

  32. H. Prinz, in Hochspannungsfelder, 1st edn. (Verlag R. Oldenbourg, Munchen, 1969), The book of Japanese edition translated by S. Masuda, T. Kono, 1st edn. (Asakura press, Tokyo, Japan, 1974)

  33. N. Oussalah, Y. Zebboudj, Eng. Comput. 21, 296 (2006)

    Article  Google Scholar 

  34. C.F. Eyring, S.S. Mackeown, R.A. Millikan, Phys. Rev. 31, 900 (1928)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sekimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekimoto, K., Takayama, M. Negative ion formation and evolution in atmospheric pressure corona discharges between point-to-plane electrodes with arbitrary needle angle. Eur. Phys. J. D 60, 589–599 (2010). https://doi.org/10.1140/epjd/e2010-10449-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-10449-7

Keywords

Navigation