Skip to main content
Log in

Optically-driven cooling for collective atomic excitations

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

We explore how to cool collective atomic excitations in an optically-driven three-level atomic ensemble, which may be described by a model of two coupled harmonic oscillators (HOs) with a time-dependent coupling. Moreover, the model of two coupled HOs is further generalized to address the resolved sideband cooling issues, where the lower-frequency HO can be cooled whenever the cooling process dominates over the heating one during the sideband transitions. Unusually, due to the absence of the heating process, the optimal result for cooling collective excitations in an atomic ensemble could break the standard resolved sideband cooling limit for general models of two coupled HOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fleischhauer, M.D. Lukin, Phys. Rev. Lett. 84, 5094 (2000)

    Article  ADS  Google Scholar 

  2. M. Fleischhauer, M.D. Lukin, Phys. Rev. A 65, 022314 (2002)

    Article  ADS  Google Scholar 

  3. K.-J. Boller, A. Imamoglu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  Google Scholar 

  4. S.E. Harris, Phys. Today 50, 36 (1997)

    Article  Google Scholar 

  5. M. Xiao, Y.-Q. Li, S.-Z. Jin, J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995)

    Article  ADS  Google Scholar 

  6. H. Wu, J. Gea-Banacloche, M. Xiao, Phys. Rev. Lett. 100, 173602 (2008)

    Article  ADS  Google Scholar 

  7. C.P. Sun, Y. Li, X.F. Liu, Phys. Rev. Lett. 91, 147903 (2003)

    Article  ADS  Google Scholar 

  8. Y. Li, C.P. Sun, Phys. Rev. A 69, 051802R (2004)

    Article  ADS  Google Scholar 

  9. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  10. L.-M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Nature 414, 413 (2001)

    Article  ADS  Google Scholar 

  11. A. Kuzmich, W.P. Bowen, A.D. Boozer, A. Boca, C.W. Chou, L.M. Duan, H.J. Kimble, Nature 423, 731 (2003)

    Article  ADS  Google Scholar 

  12. C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, H. J. Kimble, Science 316, 1316 (2007)

    Article  ADS  Google Scholar 

  13. S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, J.-W. Pan, Phys. Rev. Lett. 97, 173004 (2006)

    Article  ADS  Google Scholar 

  14. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurásek, E. S. Polzik, Nature 432, 482 (2004)

    Article  ADS  Google Scholar 

  15. M.D. Eisaman, A. André, F. Massou, M. Fleischhauer, A.S. Zibrov, M.D. Lukin, Nature 438, 837 (2005)

    Article  ADS  Google Scholar 

  16. C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Nature 409, 490 (2001)

    Article  ADS  Google Scholar 

  17. B. Zhao, Z.B. Chen, Y.A. Chen, J. Schmiedmayer, J.W. Pan, Phys. Rev. Lett. 98, 240502 (2007)

    Article  ADS  Google Scholar 

  18. A. Kastler, Nobel Lecture: Optical methods for studying Hertzian resonances (1966)

  19. W. Happer, Rev. Mod. Phys. 44, 169 (1972)

    Article  ADS  Google Scholar 

  20. A.N. Cleland, M.L. Roukes, Appl. Phys. Lett. 69, 2653 (1996)

    Article  ADS  Google Scholar 

  21. X.M.H. Huang, C.A. Zorman, M. Mehregany, M.L. Roukes, Nature 421, 496 (2003)

    Article  ADS  Google Scholar 

  22. I. Wilson-Rae, P. Zoller, A. Imamou, Phys. Rev. Lett. 92, 075507 (2004)

    Article  ADS  Google Scholar 

  23. P. Zhang, Y.D. Wang, C.P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

    Article  ADS  Google Scholar 

  24. A. Naik, O. Buu, M.D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, K.C. Schwab, Nature 443, 193 (2006)

    Article  ADS  Google Scholar 

  25. C.H. Metzger, K. Karrai, Nature 432, 1002 (2004)

    Article  ADS  Google Scholar 

  26. S. Gigan, H.R. Böhm, M. Paternostro, F. Blaser, G. Langer, J.B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger, Nature 444, 67 (2006)

    Article  ADS  Google Scholar 

  27. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, Nature 444, 71 (2006)

    Article  ADS  Google Scholar 

  28. I. Wilson-Rae, N. Nooshi, W. Zwerger, T.J. Kippenberg, Phys. Rev. Lett. 99, 093901 (2007)

    Article  ADS  Google Scholar 

  29. T.J. Kippenberg, K.J. Vahala, Opt. Express 15, 17172 (2007)

    Article  ADS  Google Scholar 

  30. F. Marquardt, J.P. Chen, A.A. Clerk, S. M. Girvin, Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  Google Scholar 

  31. F. Marquardt, A.A. Clerk, S.M. Girvin, J. Mod. Opt. 55, 3329 (2008)

    Article  MATH  ADS  Google Scholar 

  32. C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, Phys. Rev. A 77, 033804 (2008)

    Article  ADS  Google Scholar 

  33. Y. Li, Y.-D. Wang, F. Xue, C. Bruder, Phys. Rev. B 78, 134301 (2008)

    Article  ADS  Google Scholar 

  34. M. Grajcar, S. Ashhab, J.R. Johansson, Franco Nori, Phys. Rev. B 78, 035406 (2008)

    Article  ADS  Google Scholar 

  35. P. Rabl, C. Genes, K. Hammerer, M. Aspelmeyer, Phys. Rev. A 80, 063819 (2009)

    Article  ADS  Google Scholar 

  36. S. Gröblacher, K. Hammerer, M.R. Vanner, M. Aspelmeyer, Nature 460, 724 (2009)

    Article  ADS  Google Scholar 

  37. M.D. LaHaye, O. Buu, B. Camarota, K.C. Schwab, Science 304, 74 (2004)

    Article  ADS  Google Scholar 

  38. F. Diedrich, J.C. Bergquist, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 62, 403 (1989)

    Article  ADS  Google Scholar 

  39. C. Monroe, D.M. Meekhof, B.E. King, S.R. Jefferts, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 75, 4011 (1995)

    Article  ADS  Google Scholar 

  40. S.E. Hamann, D.L. Haycock, G. Klose, P.H. Pax, I.H. Deutsch, P.S. Jessen, Phys. Rev. Lett. 80, 4149 (1998)

    Article  ADS  Google Scholar 

  41. G.R. Jin, P. Zhang, Y.-X. Liu, C.P. Sun, Phys. Rev. B 68, 134301 (2003)

    Article  ADS  Google Scholar 

  42. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge Univercity Press, New York, 1997), Chap. 9

  43. A. Mosk, S. Kraft, M. Mudrich, K. Singer, W. Wohlleben, R. Grimm, M. Weidemüller, Appl. Phys. B 73, 791 (2001)

    Article  ADS  Google Scholar 

  44. S. Chu, Science 253, 861 (1991)

    Article  ADS  Google Scholar 

  45. C.S. Wood, S.C. Bennett, D. Cho, B.P. Masterson, J.L. Roberts, C.E. Tanner, C.E. Wieman, Science 275, 1759 (1997)

    Article  Google Scholar 

  46. H. Ian, Z.R. Gong, C.P. Sun, Front. Phys. China 3, 294 (2008)

    Article  ADS  Google Scholar 

  47. L. Tian, Phys. Rev. B 79, 193407 (2009)

    Article  ADS  Google Scholar 

  48. K. Jacobs, H.I. Nurdin, F.W. Strauch, M. James, e-print: arXiv:1003.2653 (2010)

  49. F. Schmidt-kaler, J. Eschner, G. Morigi, C.F. Roos, D. Leibfried, A. Mundt, R. Blatt, Appl. Phys. B 73, 807 (2001)

    Article  ADS  Google Scholar 

  50. G. Morigi, J. Eschner, C.H. Keitel, Phys. Rev. Lett. 85, 4458 (2000)

    Article  ADS  Google Scholar 

  51. K. Xia, J. Evers, Phys. Rev. Lett. 103, 227203 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Li, Z. D. Wang or C. P. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Wang, Z. & Sun, C. Optically-driven cooling for collective atomic excitations. Eur. Phys. J. D 61, 215–220 (2011). https://doi.org/10.1140/epjd/e2010-10353-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-10353-2

Keywords

Navigation