Skip to main content
Log in

Time-resolved processes in a pulsed electrical discharge in argon bubbles in water

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

A phenomenological picture of a pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging characterization methods. The discharge is generated by applying 1 \(\mu \)s pulses of 5 to 20 kV between a needle and a disk electrode submerged in water. An Ar gas bubble surrounds the tip of the needle electrode. Imaging, electrical characteristics, and time-resolved optical emission spectroscopic data suggest a fast streamer propagation mechanism and the formation of a plasma channel in the bubble. Comparing the electrical and imaging data for consecutive pulses applied to the bubble at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from the presence of long-lived chemical species, such as ozone and oxygen. Imaging and electrical data show the presence of two discharge events during each applied voltage pulse, a forward discharge near the beginning of the applied pulse depositing charge on the surface of the bubble and a reverse discharge removing the accumulated charge from the water/gas interface when the applied voltage is turned off. The pd value of ~ 300–500 torr cm, the 1 μs long pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique compared to the traditional corona or dielectric barrier discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wen, H. Liu, W. Liu, X. Jiang, Plasma Chem. Plasma Process. 5, 137 (2005)

    Article  ADS  Google Scholar 

  2. B. Sun, M. Sato, J. Clemens, J. Phys. D 32, 1908 (1999)

    Article  ADS  Google Scholar 

  3. M. Kurahashi, S. Katsura, A. Mizuno, J. Electrostat. 42, 93 (1997)

    Article  Google Scholar 

  4. T. Miichi, S. Ihara, S. Satoh, C. Yamabe, Vacuum 59, 236 (2000)

    Article  Google Scholar 

  5. T. Miichi, N. Hayashi, S. Ihara, S. Satoh, C. Yamabe, Ozone Sci. Eng. 24, 471 (2002)

    Article  Google Scholar 

  6. C. Yamabe, F. Takeshita, T. Miichi, N. Hayashi, S. Ihara, Plasma Processes Polym. 2, 246 (2005)

    Article  Google Scholar 

  7. A. Anpilov et al., J. Phys. D Phys. 34, 993 (2001)

    Article  ADS  Google Scholar 

  8. A.M. Anpilov, E.M. Barkhudarov, N. Christofi, V.A. Kop’ev, I.A. Kossyi, M.I. Taktakishvili, Y. Zadiraka, Lett. Appl. Microbiol. 35, 90 (2002)

    Article  Google Scholar 

  9. Y. Akishev, M. Grushin, V. Karalnik, A. Monich, A. Petryakov, N. Trushkin, Plasma Sci. IEEE Trans. 36, 1142 (2008)

    Article  ADS  Google Scholar 

  10. P. Bruggeman, C. Leys, J. Phys. D 42, 053001 (2009)

    Article  ADS  Google Scholar 

  11. O. Mozgina, S. Gershman, A. Belkind, K. Becker, C. Christodoulatos, Abstracts, The 33rd IEEE International Conference (2006), p. 217

  12. O. Mozgina, A. Koutsospyros, S. Gershman, A. Belkind, C. Christodoulatos, K.H. Becker, Plasma Sci. IEEE Trans. 37, 905 (2007)

    Article  ADS  Google Scholar 

  13. O. Mozgina, Ph.D. thesis, Stevens Institute of Technology, 2008

  14. M. Hayashi, National Institute For Fusion Science, Report No. NIFS-DATA-72, 2003

  15. M.A. Malik, Ubaid-ur-Rehman, A. Ghaffar, K. Ahmed, Plasma Sources Sci. Technol. 11, 236 (2002)

    Article  ADS  Google Scholar 

  16. P. Bruggeman, T. Verreycken, M. Gonzalez, J. Walsh, M. Kong, C. Leys, D. Schram, J. Phys. D 43, 124005 (2010)

    Article  ADS  Google Scholar 

  17. S. Gershman, Ph.D. thesis, Rutgers University, 2008, Publication Number AAI3349882, http://mss3.libraries.rutgers.edu/dlr/TMP/ritgers-lib_24559_PDF-1.pdf

  18. S. Gershman, O. Mozgina, A. Belkind, K. Becker, 15th Symposium on Atomic and Surface Physics and related Topics, Innsbruck (Innsbruck Univ. Press, 2006), pp. 136–139

  19. S. Gershman, O. Mozgina, A. Belkind, K. Becker, E. Kunhardt, Contrib. Plasma Phys. 47, 19 (2007)

    Article  ADS  Google Scholar 

  20. S. Gershman, A. Belkind, K. Becker, IEEE Pulsed Power Conference, Digest of Technical Papers (2009), pp. 838–843

  21. N. Yu Babaeva, M. Kushner, J. Phys. D 42, 132003 (2009)

    Article  ADS  Google Scholar 

  22. P. Bruggeman, F. Iza, P. Guns, D. Lauwers, M.G. Kong, Y.A. Gonzalvo, C. Leys, D.C. Schram, Plasma Sources Sci. Technol. 19, 015016 (2010)

    Article  ADS  Google Scholar 

  23. P. Bruggeman, D. Schram, M.A. González, R. Rego, M.G. Kong, C. Leys, Plasma Source. Sci. Technol. 18, 025017 (2009)

    Article  ADS  Google Scholar 

  24. Yu. Ralchenko, A.E. Kramida, J. Reader, NIST ASD Team, NIST Atomic Spectra Database (version 3.1.5), http://physics.nist.gov/asd3 (2008)

  25. A. Fridman, L. Kennedy, Plasma Physics and Engineering (Taylor & Francis, 2004)

  26. K.H. Becker, U. Kogelschatz, K.H. Schoenbach, R.J. Barker, Non-Equilibrium Air Plasmas at Atmospheric Pressure (Institute of Physics Publishing, Philadelphia, 2005)

  27. N. Jidenko, M. Petit, J.P. Borra, J. Phys. D 39, 281293 (2006)

    Article  Google Scholar 

  28. H. Raether, Electron Avalanche and Breakdown in Gases (Butterworths, London, 1964)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gershman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gershman, S., Belkind, A. Time-resolved processes in a pulsed electrical discharge in argon bubbles in water. Eur. Phys. J. D 60, 661–672 (2010). https://doi.org/10.1140/epjd/e2010-10258-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-10258-0

Keywords

Navigation