Skip to main content
Log in

Collisions between a single gold atom and 13 atom gold clusters: an ab initio approach

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

Collision processes between a single gold atom and a gold cluster are investigated by means of ab initio techniques. The targets we consider are minimum energy 13 gold atom clusters. The kinetic energy of the projectile and its impact parameter are chosen within a range such that the three regimes we are mainly interested in studying (fusion, scattering and fragmentation) are realized. The results of the collision processes are treated using density functional theory molecular dynamics (DFT-MD), analyzed in detail, and compared with previous work, which was carried out using phenomenological potentials and classical molecular dynamics. The differences between classical MD and DFT-MD are quite significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)

    Article  ADS  Google Scholar 

  2. M. Valden, X. Lai, D.W. Goodman, Science 281, 1647 (1998)

    Article  ADS  Google Scholar 

  3. A.A. Herzing, C.J. Kiely, A.F. Carley, P. Landon, G.J. Hutchings, Science 321, 1331 (2009)

    Article  ADS  Google Scholar 

  4. J. Rogan, R. Ramírez, A.H. Romero, M. Kiwi, Eur. Phys. J. D 28, 219 (2004)

    Article  ADS  Google Scholar 

  5. S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33, 7983 (1986)

    Article  ADS  Google Scholar 

  6. N. Andersen, J.W. Gallagher, I.V. Hertel, Phys. Rep. 278, 165 (1988)

    Google Scholar 

  7. N. Andersen, J.T. Broad, E.E.B. Campbell, J.W. Gallagher, I.V. Hertel, Phys. Rep. 278, 107 (1997)

    Article  ADS  Google Scholar 

  8. N. Andersen, K. Bartschat, J.T. Broad, I.V. Hertel, Phys. Rep. 279, 251 (1997)

    Article  ADS  Google Scholar 

  9. M. Kalweit, D. Drikakis, Phys. Rev. B 74, 235415 (2006)

    Article  ADS  Google Scholar 

  10. M.M. Mariscal, S.A. Dassie, E.P.M. Leiva, J. Chem. Phys. 123, 184505 (2005)

    Article  ADS  Google Scholar 

  11. D. Alamanova, V.G. Grigoryan, M. Springborg, J. Phys. Cond. Mat. 19, 346204 (2007)

    Article  Google Scholar 

  12. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 834 (1964)

    MathSciNet  Google Scholar 

  13. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  14. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  15. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  16. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  17. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  18. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  19. J. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  20. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  21. M. Gruber, G. Heimel, L. Romaner, J. Bredas, E. Zojer, Phys. Rev. B 77, 165411 (2008)

    Article  ADS  Google Scholar 

  22. M. Mantina, R. Valero, D.G. Truhlara, J. Chem. Phys. 131, 064706 (2009)

    Article  ADS  Google Scholar 

  23. B.S. de Bas, M. Ford, M.B. Cortie, J. Phys. Cond. Mat. 18, 55 (2006)

    Article  ADS  Google Scholar 

  24. A. Vargas, G. Santarossa, M. Iannuzzi, A. Baiker, Phys. Rev. B 80, 195421 (2009)

    Article  ADS  Google Scholar 

  25. B. Assadollahzadeha, P. Schwerdtfegera, J. Chem. Phys. 131, 064306 (2009)

    Article  ADS  Google Scholar 

  26. Y. Dong, M. Springborg, Eur. Phys. J. D 43, 15 (2006)

    Article  ADS  Google Scholar 

  27. E.M. Fernández, J.M. Soler, I.L. Garzón, L.C. Balbás, Phys. Rev. B 70, 165403 (2004)

    Article  ADS  Google Scholar 

  28. M.P. Johansson, A. Lechtken, D. Schooss, M.M. Kappes, F. Furche, Phys. Rev. A 77, 053202 (2008)

    Article  ADS  Google Scholar 

  29. X. Li, H. Wang, X. Yang, Z. Zhu, J. Chem. Phys. 126, 084505 (2007)

    Article  ADS  Google Scholar 

  30. J. Wang, G. Wang, J. Zhao, Phys. Rev. B 66, 035418 (2002)

    Article  ADS  Google Scholar 

  31. L. Xiao, L. Wang, Chem. Phys. Lett. 392, 452 (2004)

    Article  ADS  Google Scholar 

  32. L. Xiao, B. Tollberg, X. Hu, L. Wang, J. Chem. Phys. 124, 114309 (2006)

    Article  ADS  Google Scholar 

  33. H. Häkkinen, M. Moseler, U. Landman, Phys. Rev. Lett. 89, 033401 (2002)

    Article  ADS  Google Scholar 

  34. J. Rogan, M. Ramírez, V. Muñoz, J.A. Valdivia, G. García, R. Ramírez, M. Kiwi, J. Phys. Cond. Mat. 21, 084209 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kiwi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, F., Rogan, J., García, G. et al. Collisions between a single gold atom and 13 atom gold clusters: an ab initio approach. Eur. Phys. J. D 61, 87–93 (2011). https://doi.org/10.1140/epjd/e2010-10195-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-10195-x

Keywords

Navigation