Skip to main content
Log in

Spectroscopic diagnostics and electric field measurements in the near-cathode region of an atmospheric pressure microplasma jet

  • Topical issue: Microplasmas: Scientific Challenges and Technological opportunities
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Linear Stark splitting of the H\(_{\beta}\) Balmer line components and spatially resolved optical emission spectroscopy (OES) measurements were used to estimate the electric field gradient in the cathode sheath region (~70 μm long) of an atmospheric pressure direct current argon flow-stabilized microplasma jet. Also, plasma parameters in the negative glow region were investigated by both OES and electrical diagnostics. The microplasma jet was operated for current ranging from 10 to 110 mA. OH (A 2 \({\rm\Sigma}^+\), v = 0 \(\to\) X 2 \({\rm\Pi}\), v’ = 0) rotational bands at 306.357 nm and also the Ar 603.213 nm line were used to determine the gas temperature, which ranges from 600 to 1000 K. Electron number density, ranging from 4.1 × 1014 to 8.5 × 1014 cm-3, was determined through analysis of the H\(_{\beta}\) line. Electron excitation temperature was also measured from the ratio of two Mo lines (8500–18 000 K) and from Boltzmann-plot of Ar 4p–4s and 5p–4s transitions (11 000–13 500 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Foest, M. Schmidt, K. Becker, Int. J. Mass Spectrom. 248, 87 (2005)

    Google Scholar 

  2. K.H. Becker, K.H. Schoenbach, J.G. Eden, J. Phys. D 39, R55 (2006)

    Article  ADS  Google Scholar 

  3. E.E. Kunhardt, IEEE Trans. Plasma Sci. 28, 189 (2000)

    Article  ADS  Google Scholar 

  4. B.N. Sismanoglu, J. Amorim, Eur. Phys. J. Appl. Phys. 41, 165 (2008)

    Article  ADS  Google Scholar 

  5. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Spectrochim. Acta B 61, 2 (2006)

    Article  ADS  Google Scholar 

  6. S.D. Angel, A. Simon, Plasma Source. Sci. Technol. 16, B1 (2007)

    Article  ADS  Google Scholar 

  7. T. Kikuchi, Y. Hasegawa, H. Shirai, J. Phys. D 37, 1537 (2004)

    Article  ADS  Google Scholar 

  8. L. Baars-Hibbe, P. Sichler, C. Schrader, N. Lucas, K.H. Gericke, S. Buttgenbach, J. Phys. D 38, 510 (2005)

    Article  ADS  Google Scholar 

  9. R.S. Pessoa, B.N. Sismanoglu, J. Amorim, G. Petraconi, H.S. Maciel, in Gas Discharges, Fundamentals and Applications, edited by J. Amorim (Transworld Research Network, India, 2007)

  10. M.P. Gomes, B.N. Sismanoglu, J. Amorim, Braz. J. Phys. 39, 25 (2009)

    Article  Google Scholar 

  11. R.M. Sankaran, K.P. Giapis, J. Appl. Phys. 92, 2406 (2002)

    Article  ADS  Google Scholar 

  12. Q. Wang, I. Koleva, V.M. Donnelly, D.J. Economou, J. Phys. D 38, 1690 (2005)

    Article  ADS  Google Scholar 

  13. D. Staack, B. Farouk, A. Gutsol, A. Fridman, Plasma Source. Sci. Technol. 17, 025013 (2008)

    Article  ADS  Google Scholar 

  14. B.N. Sismanoglu, J. Amorim, J.A. Souza-Corrêa, C. Oliveira, M.P. Gomes, Spectrochim. Acta B 64, 1287 (2009)

    Article  Google Scholar 

  15. C. Oliveira, J.A. Souza-Corrêa, M.P. Gomes, B.N. Sismanoglu, J. Amorim, Appl. Phys. Lett. 93, 041503 (2008)

    Article  ADS  Google Scholar 

  16. T. Wujec, H.W. Janus, W. Jelenski, J. Phys. D 36, 868 (2003)

    Article  ADS  Google Scholar 

  17. www.nist.gov, accessed in February 2010

  18. H.E. White, Introduction to Atomic Spectra (McGraw-Hill Book Company, New York, 1934)

  19. N. Ryde, Atoms and Molecules in Electric Fields (Almqvist & Wiksell International, Stockholm, 1976)

  20. Yu.P. Raizer, Gas Discharge Physics (Springer-Verlag, New York, 1997)

  21. M.R. Radjenovic, B. Radjenovic, Plasma Source. Sci. Technol. 17, 024005 (2008)

    Article  ADS  Google Scholar 

  22. H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997)

  23. M.D. Calzada, M. Moisan, A. Gamero, A. Sola, J. Appl. Phys. 80, 46 (1996)

    Article  ADS  Google Scholar 

  24. G.M. Petrov, J. Quant. Spectrosc. Radiat. Transfer 72, 281 (2002)

    Article  ADS  Google Scholar 

  25. C. Yubero, M.S. Dimitrijevic’, M.C. García, M.D. Calzada, Spectrochim. Acta B 62, 169 (2007)

    Article  ADS  Google Scholar 

  26. S.G. Belotstotskyi, V.M. Donnely, D.J. Economou, Plasma Source. Sci. Technol. 17, 045018 (2008)

    Article  ADS  Google Scholar 

  27. A. Von Engel, Electric plasmas: their nature and uses (Taylor and Francis Ltd, New York, 1983)

  28. A. Fridman, Plasma Chemistry (Cambridge University Press, England, 2008)

  29. D. Söderström, H. Baránková, L. Bárdoš, IEEE Trans. Plasma Sci. 35, 522 (2007)

    Article  Google Scholar 

  30. D. Rapp, P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965)

    Article  ADS  Google Scholar 

  31. J.R. Reitz, F.J. Milford, R.W. Christy, Fundamentos da Teoria Eletromagnética (Ed. Campus, Rio de Janeiro, 1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Sismanoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sismanoglu, B., Grigorov, K., Santos, R. et al. Spectroscopic diagnostics and electric field measurements in the near-cathode region of an atmospheric pressure microplasma jet. Eur. Phys. J. D 60, 479–487 (2010). https://doi.org/10.1140/epjd/e2010-00279-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00279-0

Keywords

Navigation