Skip to main content
Log in

OH number densities and plasma jet behavior in atmospheric microwave plasma jets operating with different plasma gases (Ar, Ar/N2, and Ar/O2)

  • Topical issue: Microplasmas: Scientific Challenges and Technological opportunities
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

OH radical number density in multiple atmospheric pressure microwave plasma jets is measured using UV cavity ringdown spectroscopy of the OH (A–X) (0–0) band at 308 nm. The plasma cavity was excited by a 2.45 GHz microwave plasma source and plasma jets of 2–12 mm long were generated by using three different plasma gases, argon (Ar), Ar/N2, and Ar/O2. Comparative characterization of the plasma jets in terms of plasma shape, stability, gas temperature, emission intensities of OH, NO, and N2, and absolute number density of the OH radical was carried out under different plasma gas flow rates and powers at various locations along the plasma jet axis. With three different operating gases, the presence of OH radicals in all of the plasma jets extended to the far downstream. As compared to the argon plasma jets, the plasma jets formed with Ar/N2 and Ar/O2 are more diffuse and less stable. Plasma gas temperatures along the jet axis were measured to be in the range of 470–800 K for all of the jets formed in the different gas mixtures. In each plasma jet, OH number density decreases along the jet axis from the highest OH density in the vicinity of the jet tip to the lowest in the far downstream. OH density ranges from 1.3 × 1012 to 1.1 × 1016, 4.1 × 1013 to 3.9 × 1015, and 7.0 × 1012 to 4.6 × 1016 molecule/cm3 in the Ar, Ar/N2, and Ar/O2 plasma jets, respectively. The OH density dependence on plasma power and gas flow rate in the three plasma jets is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Glassman, R.A. Yetter, in Combustion, 4th edn. (Elsevier Inc. Burlington, MA, US, 2008)

  2. J.T. Herron, D.S. Green, Plasma Chem. Plasma Proc. 21, 459 (2001)

    Article  Google Scholar 

  3. Q.Y. Nie, Z. Cao, C.S. Ren, D.Z. Wang, M.G. Kong, New J. Phys. 11, 115015 (2009)

    Article  ADS  Google Scholar 

  4. G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets, A. Fridman, Plasma Processes Polym. 5, 503 (2008)

    Article  Google Scholar 

  5. M. Laroussi, IEEE Trans. Plasma Sci. 37, 714 (2009)

    Article  ADS  Google Scholar 

  6. R.N. Zare, P.J. Dagdigian, Science 185, 739 (1974)

    Article  ADS  Google Scholar 

  7. R. Ono, T. Oda, Combust. Flame 152, 69 (2008)

    Article  Google Scholar 

  8. R. Ono, T. Oda, J. Phys. D 41, 035204/1 (2008)

    Google Scholar 

  9. D.R. Crosley, NASA Conf. Pub., CP-3245 (1994)

  10. A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988)

    Article  ADS  Google Scholar 

  11. ACS Symposium Series 720:Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique, edited by K.W. Busch, M.A. Busch (Oxford University Press, 1999)

  12. K.K. Lehmann, US Patent number 5528040 (1996)

  13. G. Berden, R. Peeters, G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000)

    Article  Google Scholar 

  14. D.M. Mazurenka, A.J. Orr-Ewing, R. Peverall, G.A.D. Ritchie, Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 101, 100 (2005)

    Article  Google Scholar 

  15. C. Wang, J. Anal. At. Spectrom. 22, 1347 (2007)

    Article  Google Scholar 

  16. Cavity Ring-Down Spectroscopy, Techniques and Applications, edited by G. Berden, R. Engeln (Blackwell Publishing Ltd., UK, 2009)

  17. C. Wang, F.J. Mazzotti, G.P. Miller, C.B. Winstead, Appl. Spectrosc. 56, 386 (2002)

    Article  ADS  Google Scholar 

  18. R.T. Jongma, M.G.H. Boogaarts, I. Holleman, G. Meijer, Rev. Sci. Instrum. 66, 2821 (1995)

    Article  ADS  Google Scholar 

  19. S. Cheskis, I. Derzy, V.A. Lozovsky, A. Kachanov, D. Romanini, Appl. Phys. B 66, 377 (1998)

    Article  ADS  Google Scholar 

  20. X. Mercier, E. Therssen, J.F. Pauwels, P. Desgroux, Chem. Phys. Lett. 299, 75 (1999)

    Article  ADS  Google Scholar 

  21. M.C. van Beek, J.J. ter Meulen, Chem. Phys. Lett. 333, 237 (2001)

    Article  ADS  Google Scholar 

  22. J.H. Grinstead, G. Laufer, R.H. Krauss, J.C. McDaniel, Appl. Opt. 33, 1115 (1994)

    ADS  Google Scholar 

  23. C. Wang, F.J. Mazzotti, S.P. Koirala, C.B. Winstead, G.P. Miller, Appl. Spectrosc. 58, 734 (2004)

    Article  ADS  Google Scholar 

  24. C. Wang, N. Srivastava, S. Scherrer, P.-R. Jang, T.S. Dibble, Y. Duan, Plasma Source. Sci. Technol. 18, 025030 (2009)

    Article  ADS  Google Scholar 

  25. Z.W. Liu, X.F. Yang, A.M. Zhu, G.L. Zhao, Y. Xu, Eur. Phys. J. D 48, 365 (2008)

    Article  ADS  Google Scholar 

  26. N. Srivastava, C. Wang, T.S. Dibble, Eur. Phys. J. D 54, 77 (2009)

    Article  ADS  Google Scholar 

  27. C. Wang, N. Srivastava, T.S. Dibble, Appl. Phys. Lett. 95, 051501 (2009)

    Article  ADS  Google Scholar 

  28. S.Y. Moon, W. Choe, Phys. Plasma 13, 103503 (2006)

    Article  ADS  Google Scholar 

  29. A. Bogaerts, Spectrochim. Acta B 64, 1266 (2009)

    Article  Google Scholar 

  30. A. Bogaerts, Spectrochim. Acta B 64, 126 (2009)

    Article  ADS  Google Scholar 

  31. C. Prokisch, A.M. Bilgic, E. Voges, J.A.C. Broekaert, J. Jonkers, M. van Sande, J.A.M. van der Mullen, Spectrochim. Acta B 54, 1253 (1999)

    Article  ADS  Google Scholar 

  32. S.Y. Moon, W. Choe, H.S. Uhm, Y.S. Hwang, J.J. Choi, Phys. Plasmas 9, 4045 (2002)

    Article  ADS  Google Scholar 

  33. J.A.M. van der Mullen, Spectrochim. Acta B 45, 1 (1990)

    Article  ADS  Google Scholar 

  34. D. Staack, B. Farouk, A. Gutsol, A. Fridman, Plasma Source. Sci. Technol. 17, 025013 (2008)

    Article  ADS  Google Scholar 

  35. www.specair-radiation.net, accessed in May 2010

  36. C.O. Laux, T.G. Spence, C.H. Krugar, R.N. Zare, Plasma Source. Sci. Technol. 12, 125 (2003)

    Article  ADS  Google Scholar 

  37. www.sri.com/psd/lifbase, accessed in May 2010

  38. A. Goldman, J.R. Gills, J. Quant. Spectrosc. Radiat. Transfer 25, 111 (1981)

    Article  ADS  Google Scholar 

  39. I.A. Kossyi, A. Yu Kostinsky, A.A. Matveyev, V.P. Silakov, Plasma Source. Sci. Technol. 1, 207 (1992)

    Article  ADS  Google Scholar 

  40. T. Harb, W. Kedzierski, J.W. McConkey, J. Chem. Phys. 115, 5507 (2001)

    Article  ADS  Google Scholar 

  41. Low Temperature Plasmas, edited by R. Hippler, H. Kersten, M. Schmidt, K.H. Schoenbach (Wiley-VCH, Weinheim, Germany, 2008), Vol. 2

  42. A. Schutze, J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hick, IEEE Trans. Plasma Sci. 26, 1685 (1998)

    Article  ADS  Google Scholar 

  43. P. Bruggeman, D.C. Schram, Plasma Source. Sci. Technol. 19, 045025 (2010)

    Article  ADS  Google Scholar 

  44. W.B. DeMore, S.P. Sander, D.M. Golden, R.F. Hampson, M.J. Kurylo, C.J. Howard, A.R. Ravishankara, C.E. Kolb, M.J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Vol. 12, JPL Publication 97-4, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (1997)

  45. J.D. Adamson, S.K. Farhat, C.L. Morter, G.P. Glass, R.F. Curl, L.F. Phillips, J. Phys. Chem. 98, 5665 (1994)

    Article  Google Scholar 

  46. W. Hack, H.G. Wagner, A. Zasypkin, Ber. Bunsenges. Phys. Chem. 98, 156 (1994)

    Google Scholar 

  47. D.L. Baulch, C.J. Cobos, R.A. Cox, C. Esser, P. Frank, T. Just, J.A. Kerr, M.J. Pilling, J. Troe, R.W. Walker, J. Warnatz, J. Phys. Chem. Ref. Data 21, 411 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Srivastava, N. OH number densities and plasma jet behavior in atmospheric microwave plasma jets operating with different plasma gases (Ar, Ar/N2, and Ar/O2). Eur. Phys. J. D 60, 465–477 (2010). https://doi.org/10.1140/epjd/e2010-00275-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00275-4

Keywords

Navigation