How universal are Fibonacci patterns?

Abstract.

Pattern patterns, or phyllotaxis, the arrangements of phylla (flowers, leaves, bracts, florets) in the neighborhood of growth tips, have intrigued natural scientists for over four hundred years. Prominent amongst the observed features is the fact that phylla lie on families of alternately oriented spirals and that the numbers in these families belong to subsets  {m j } of the integers defined by the Fibonacci rule m j + 1 = m j  + m j − 1. The corresponding patterns, which we call Fibonacci patterns, are widespread and universal on plants. Our goal in this paper is to ask if they may also be seen in other physical structures and to try to quantify the circumstances under which one may expect Fibonacci patterns to occur.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M.C. Cross, H. Greenside, Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge UP, Cambridge, 2009)

  2. 2.

    M. Kuecken, A.C. Newell, Europhys. Lett. 68, 141 (2005)

    Article  ADS  Google Scholar 

  3. 3.

    G.A.A. Dosio, F. Tardieu, O. Turc, New Phytol. 170, 711 (2006)

    Article  Google Scholar 

  4. 4.

    W. Hofmeister, Allegmeine Morphologie der Gewachse, Handbuch der Physiologischen Botanik (Engelmann, Leipzig, 1868)

  5. 5.

    S. Douady, Y. Couder, J. Theor. Biol. 178, 178 (1996)

    Google Scholar 

  6. 6.

    S. Douady, Y. Couder, J. Theor. Biol. 178, 255 (1996)

    Article  Google Scholar 

  7. 7.

    S. Douady, Y. Couder, J. Theor. Biol. 178, 295 (1996)

    Article  Google Scholar 

  8. 8.

    M. Snow, R. Snow, Proc. Roy. Soc. B 139, 545 (1952)

    Article  ADS  Google Scholar 

  9. 9.

    A.C. Newell, P.D. Shipman, J. Stat. Phys. 121, 5 (2005)

    Article  MathSciNet  Google Scholar 

  10. 10.

    A.C. Newell, P.D. Shipman, Analysis and Applications 6, 4 (2008)

    Article  MathSciNet  Google Scholar 

  11. 11.

    A.C. Newell, P.D. Shipman, Z. Sun, J. Theor. Biol. 251, 421 (2008)

    Article  Google Scholar 

  12. 12.

    A.C. Newell, P.D. Shipman, Z. Sun, Plant Signal. Behav. 8, 511 (2008)

    Google Scholar 

  13. 13.

    P.D. Shipman, A.C. Newell, Phys. Rev. Lett. 92, 168102 (2004)

    Article  ADS  Google Scholar 

  14. 14.

    P.D. Shipman, A.C. Newell, J. Theor. Biol. 236, 154 (2005)

    Article  MathSciNet  Google Scholar 

  15. 15.

    P.D. Shipman, Phys. Rev. E 81, 031905 (2010)

    Article  ADS  Google Scholar 

  16. 16.

    P. Green, C. Steele, S. Rennich, Ann. Bot. 77, 515 (1996)

    Article  Google Scholar 

  17. 17.

    P.B. Green, Am. J. Bot. 86, (1999)

  18. 18.

    R.S. Smith, S. Guyomarc’h, T. Mandel, D. Reinhardt, C. Kuhlemeier, P. Prusinkiewicz, PNAS 103, 1301 (2006)

    Article  ADS  Google Scholar 

  19. 19.

    H. Jönsson, M.G. Heisler, B.E. Shapiro, E.M. Meyerowitz, E. Mjolsness, PNAS 103, 1633 (2006)

    Article  ADS  Google Scholar 

  20. 20.

    P.B. de Reuille, I. Bohn-Courseau, K. Ljung, H. Morin, N. Carraro, C. Godin, J. Traas, Proc. Natl. Acad. Sci. 103, 1627 (2006)

    Article  ADS  Google Scholar 

  21. 21.

    D. Reinhardt, T. Mandel, C. Kuhlemeier, Plant Cell. 12, 507 (2000)

    Article  Google Scholar 

  22. 22.

    P. Atela, C. Golé, S. Hotton, J. Nonlinear Sci. 12, 641 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. 23.

    S. Hotton, Ph.D. thesis, University of California-Santa Cruz, 1999

  24. 24.

    A.H. Church, On the Relation of Phyllotaxis to Mechanical Laws (Williams and Norgate, 1904)

  25. 25.

    Z. Csahok, C. Misbah, Europhys. Lett. 47, 331 (1999)

    Article  ADS  Google Scholar 

  26. 26.

    O. Hamant, M. Heister, H. Jönsson, P. Krupinski, M. Uyttewaal, P. Bokov, F. Corson, P. Sahlin, A. Boudaoud, E.M. Meyerowitz, Y. Couder, J. Traas, Science 332, 1650 (2008)

    Article  ADS  Google Scholar 

  27. 27.

    S. Hotton, V. Johnson, J. Wilbarger, K. Zwieniecki, P. Atela, C. Golé, J. Dumais, J. Plant Growth Reg. 25, (2006)

  28. 28.

    L. Pismen, A. Nepomnyashchy, Europhys. Lett. 27, 433 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P.D. Shipman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shipman, P., Sun, Z., Pennybacker, M. et al. How universal are Fibonacci patterns?. Eur. Phys. J. D 62, 5–17 (2011). https://doi.org/10.1140/epjd/e2010-00271-8

Download citation

Keywords

  • Shoot Apical Meristem
  • Discrete Dynamical System
  • Linear Growth Rate
  • Fibonacci Sequence
  • Planar Pattern