Skip to main content
Log in

A similarity law in botanic. The case of hydraulic conductivity of trees

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

The hydraulic conductivity of xylem vascular systems is modelled via the Verhulst differential equation with the introduction of relevant dimensionless quantities. Sap pressure is scaled to the geometrical and elastic properties of the xylem tubes, and cavitation events are considered as a limited growth process. The self-similar solution of Verhulst equation is a sigmoidal function, that is the same empirical correlation used to fit the experimental data. An important result of this approach is to reveal the existence of a control parameter. This number, which embodies morphological and physicochemical properties of vascular system, characterizes the discharge of tense fluids.The theoretical predictions are in good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.S. Nobel, Physicochemical and Environmental Plant Physiology (Academic Press, San Diego, 1991)

  2. H. Cochard, Cell and Environment 25, 815 (2002)

    Article  Google Scholar 

  3. H. Cochard, F. Froux, S. Mayr, C. Coutand, Plant Physiol. 134, 401 (2004)

    Article  Google Scholar 

  4. T.J. Brodribb, N.M. Holbrook, Plant Physiol. 137, 1139 (2005)

    Article  Google Scholar 

  5. S. Sevanto, E. Nikinmaa, A. Riikonen, M. Daley, J.C. Pettijohn, T.N. Mikkelsen, N. Phillips, N.M. Holbrook, Plant Soil 305, 77 (2008)

    Article  Google Scholar 

  6. M.J. Linton, P.S. Nobel, Am. J. Bot. 86, 538 (1998)

    Google Scholar 

  7. J.C. Domec, F.C. Meinzer, B. Lachenbruch, J. Housset, Tree Physiol. 27, 1389 (2007)

    Article  Google Scholar 

  8. B. Choat, A. Cobb, S. Jansen, New Phytol. 177, 608 (2008)

    Article  Google Scholar 

  9. M.H. Zimmermann, Xylem structure and the ascent of sap (Springer-Verlag, Berlin, Germany, 1983)

  10. M.T. Tyree, J.S. Sperry, Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 19 (1989)

    Article  Google Scholar 

  11. N.M. Holbrook, E.T. Ahrens, M.J. Burns, M.A. Zwieniecki, Plant Physiol. 126, 27 (2001)

    Article  Google Scholar 

  12. N.W. Pammenter, C. Vander Willigen, Tree Physiol. 18, 589 (1998)

    Google Scholar 

  13. J.C. Domec, B.L. Gardner, Trees 15, 204 (2001)

    Article  Google Scholar 

  14. J.S. Sperry, N.Z. Saliendra, W.T. Pockman, H. Cochard, P. Cruiziat, S.D. Davis, F.W. Ewes, M.T. Tyree, Plant Cell Environ. 19, 427 (1996)

    Article  Google Scholar 

  15. U.G. Hacke, J.S. Sperry, W.T. Pockman, S.D. Davis, K. McCullogh, Oecologia 126, 457 (2001)

    Article  Google Scholar 

  16. M.T. Tyree, M.H. Zimmermann, in Xylem structure and the Ascent of Sap, edited by T.E. Timell (Springer, Berlin, 2002)

  17. J.S. Sperry, U.G. Hacke, Am. J. Bot. 91, 369 (2004)

    Article  Google Scholar 

  18. A.L. Jacobsen, F.W. Ewers, R. Brandon Pratt, W.A. Paddock III, S.D. Davis, Plant Physiol. 139, 546 (2005)

    Article  Google Scholar 

  19. J.S. Sperry, U.G. Hacke, J. Pitterman, Am. J. Bot. 93, 1490 (2006)

    Article  Google Scholar 

  20. U.G. Hacke, J.S. Sperry, J.K. Wheeler, L. Castro, Tree Physiol. 26, 689 (2006)

    Article  Google Scholar 

  21. H. Cochard, E. Casella, M. Mencuccini, Tree Physiol. 27, 1761 (2007)

    Article  Google Scholar 

  22. B. Choat, J. Pitermann, New Phytol. 182, 557 (2009)

    Article  Google Scholar 

  23. M. Sieber, L.J. Kucera, IAWA Bulletin n.s. 1, 49 (1980)

    Google Scholar 

  24. H.V. Calkin, A.C. Gibson, P.S. Nobel, J. Exp. Botany 37, 1054 (1986)

    Article  Google Scholar 

  25. M. Mencuccini, J. Grace, M. Fioravanti, Tree Physiol. 17, 105 (1997)

    Google Scholar 

  26. J.C. Domec, F.C. Meinzer, B.L. Gardner, D. Woodruff, Tree Physiol. 26, 275 (2006)

    Article  Google Scholar 

  27. G. Karam, Ann. Bot. 95, 1179 (2005)

    Article  Google Scholar 

  28. J. Irvine, J. Grace, Planta 202, 455 (1997)

    Article  Google Scholar 

  29. M. Perämäki, T. Versala, E. Nikinmaa, Tree Physiol. 25, 1091 (2005)

    Article  Google Scholar 

  30. S.P. Timoshenko, J.M. Gere, Theory of Elastic Stability (McGraw-Hill, Auckland, 1963)

  31. S. Batdorf, National Advisory Committe for Aeronautics, Report No 874, 1947

  32. W.C. Young, R.G. Budynas, Roark’s formulas for stress and strain (McGraw-Hill, New York, 2002)

  33. R.D. Zou, C.G. Foster, Thin-Walled Struct. 22, 143 (1995)

    Article  Google Scholar 

  34. Z.M. Li, Z.Q. Lin, Compos. Struct. 92, 552 (2010)

    Google Scholar 

  35. R. Lo Frano, G. Forasassi, Science and Technology of Nuclear Installations 2008, 685805 (2008)

    Article  Google Scholar 

  36. I.T. Schaap, C. Carrasco, P.J. de Pablo, F.C. MacKintosh, C.F. Schmidt, Biophys. J. 91, 1521 (2006)

    Article  ADS  Google Scholar 

  37. P.J. de Pablo, I.A.T. Schaap, F.C. MacKintosh, C.F. Schmidt, Phys. Rev. Lett. 91, 098101 (2003)

    Article  ADS  Google Scholar 

  38. J.C. Domec, J.M. Warren, F.C. Meinzer, B. Lachenbruch, IAWA Journal 30, 100 (2009)

    Google Scholar 

  39. S. Mayr, H. Cochard, Plant Cell Environ. 26, 1365 (2003)

    Article  Google Scholar 

  40. I. Offenthaler, P. Hietz, H. Richter, Trees 15, 215 (2001)

    Article  Google Scholar 

  41. M. Berthelot, Ann. Chim. Phys. 30, 232 (1850)

    Google Scholar 

  42. L. Glass, J.D. Murray, in Mathematical Biology, Interdisciplinary Applied Mathematics, edited by S.S. Antman, J.E. Marsden, L. Sirovich, S. Wiggins (Springer, New York, 2001), Vol. 17

  43. Y.M.J. Chew, W.R. Paterson, D.I. Wilson, J. Memb. Sci. 296, 29 (2007)

    Article  Google Scholar 

  44. N. Wistuba, R. Reich, H.J. Wagner, J.J. Zhu, H. Schneider, F.W. Bentrup, A. Haase, U. Zimmermann, Plant Biology 2, 579 (2000)

    Article  Google Scholar 

  45. B. Choat, M. Ball, J. Luly, J. Holtum, Plant Physiol. 131, 41 (2003)

    Article  Google Scholar 

  46. S.S.O. Burgess, J. Pittermann, T.E. Dawson, Plant Cell Environ. 29, 229 (2006)

    Article  Google Scholar 

  47. A.G. Meyra, V.A. Kuz, G.J. Zarragoicoechea, Tree Physiol. 27, 1401 (2007)

    Article  Google Scholar 

  48. E.C. February, W.D. Stock, W.J. Bond, D.J. Le Roux, IAWA Journal 16, 269 (1995)

    Google Scholar 

  49. A.M. Azambuja, A. Alves Dias, Materials Research 3, 87 (2006)

    Google Scholar 

  50. M.P. Sarén, R. Serimaa, S. Andersson, T. Paakkari, P. Saranpaä, E. Pesonen, J. Struct. Biol. 136, 101 (2001)

    Article  Google Scholar 

  51. E. Hæggström, T. Koponen, T. Karppinen, P. Saranpaä, R. Serimaa, Review of Quantitative Nondestructive Evaluation 25, 1366 (2006)

    ADS  Google Scholar 

  52. S. Mayr, B. Rothart, B. Dämon, J. Exp. Bot. 54, 2563 (2003)

    Article  Google Scholar 

  53. B. Jourez, A. Riboux, A. Leclercq, IAWA J. 22, 133 (2001)

    Google Scholar 

  54. Y. Kawamura, Mokuzai Gakkaishi 30, 785 (1984)

    Google Scholar 

  55. H. Cochard, M.T. Tyree, Tree Physiol. 6, 393 (1990)

    Google Scholar 

  56. M.T. Tyree, J. Alexander, J.L. Machado, Tree Physiol. 10, 411 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V.A. Kuz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyra, A., Zarragoicoechea, G. & Kuz, V. A similarity law in botanic. The case of hydraulic conductivity of trees. Eur. Phys. J. D 62, 19–23 (2011). https://doi.org/10.1140/epjd/e2010-00242-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00242-1

Keywords

Navigation