Skip to main content
Log in

Electrical and optical emission measurements of a capillary dielectric barrier discharge

  • Topical issue: Microplasmas: Scientific Challenges and Technological opportunities
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

We report a capillary dielectric barrier discharge (Cap-DBD) plasma operated in atmospheric pressure air. The plasma reactor consists of metal wire electrodes inside quartz capillary tubes powered with a low kilohertz frequency AC high voltage power supply. Various reactor geometries (planar, 3-D multilayer, and circular) with wall-to-wall separation ranging from zero up to 500 micron were investigated. For the electrical and spectral measurements, three reactors, each with six tubes, six inches in length, were assembled with gap widths of 500 micron, 225 micron, and 0 micron (i.e. tubes touching). The discharges appear homogenous across the whole device at separations below 225 micron and turned into filamentary discharges at larger gap spaces. The operating voltage was generally around 3–4 kV (rms). The power consumption by the Cap-DBD was calculated using voltage/charge Lissajous figures with observed powers of a few watts to a maximum of about 14 W for the reactor with no gap spacing. Further studies of optical emission spectroscopy (OES) were employed to evaluate the reactive species generated in the microplasma source. The observed emission spectrum was predominantly within the second positive system of \(\mbox{N}_2\)(\(\mbox{C}^3\) \(\Pi_u\)\(\mbox{B}^3\) \(\Pi_g\)) and the first negative system of \(\mbox{N}^+_2\)(\(\mbox{B}^2\) \(\Sigma^+_u\)\(\mbox{X}^2\) \(\Sigma^+_g\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Laroussi, A. Fridman, P. Favia, M. Wertheimer, Plasma Proccesses Polym. 7, 1612 (2010)

    Google Scholar 

  2. M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, J.L. Zimmermann, New J. Phys. 11, 115012 (2009)

    Article  ADS  Google Scholar 

  3. P. Rajasekaran, P. Mertmann, N. Bibinov, D. Wandke, W. Viöl, P. Awakowicz, J. Phys. D 42, 225201 (2009)

    Article  ADS  Google Scholar 

  4. G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, A. Brooks, Plasma Chem. Plasma Process. 26, 425 (2006)

    Article  Google Scholar 

  5. G. Vezzù, J. Lopez, A. Freilich, K. Becker, IEEE Trans. Plasma Sci. 37, 890 (2009)

    Article  ADS  Google Scholar 

  6. G. Korfiatis, L. Moskwinski, N. Abramzon, K. Becker, C. Christodoulatos, E. Kunhardt, R. Crowe, L. Wieserman, Atomic and Surface Processes (University of Innsbruck Press, 2002)

  7. U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003)

    Article  Google Scholar 

  8. K. Kostov, R. Honda, L. Alves, M. Kayama, Braz. J. Phys. 39, 322 (2009)

    Article  Google Scholar 

  9. G. Nersisyan, W. Graham, Plasma Source. Sci. Technol. 13, 582 (2004)

    Article  ADS  Google Scholar 

  10. K. Francke, R. Rudolph, H. Miessner, Plasma Chem. Plasma Process. 23, 47 (2003)

    Article  Google Scholar 

  11. C. Wang, X. He, Appl. Surface Sci. 253, 926 (2006)

    Article  ADS  Google Scholar 

  12. R. Valdivia-Barrientos, J. Pacheco-Sotelo, M. Pacheco-Pacheco, J. Benítez-Read, R. López-Callejas, Plasma Source. Sci. Technol. 15, 237 (2006)

    Article  ADS  Google Scholar 

  13. M. Abdel-Salam, A. Hashem, A. Yehia, A. Mizuno, A. Turky, A. Gabr, J. Phys. D 36, 252 (2003)

    Article  ADS  Google Scholar 

  14. U.N. Pal, A.K. Sharma, J.S. Soni, S. Kr, H. Khatun, M. Kumar, B.L. Meena, M.S. Tyagi, B.-J. Lee, M. Iberler, J. Jacoby, K. Frank, J. Phys. D 42, 045213 (2009)

    Article  ADS  Google Scholar 

  15. M. Gallagher, N. Vaze, S. Gangoli, V. Vasilets, A. Gutsol, T. Milovanova, S. Anandan, D. Murasko, A. Fridman, IEEE Trans. Plasma Sci. 35, 1501 (2007)

    Article  ADS  Google Scholar 

  16. Z. Falkenstein, J. Coogan, J. Phys. D 30, 817 (1997)

    Article  ADS  Google Scholar 

  17. T.C. Manley, Trans. Electrochem. Soc. 84, 83 (1943)

    Google Scholar 

  18. U. Kogelschatz, Process Technologies for Water Treatment (Plenum Press, New York, 1988)

  19. J. Jackson, Classical Electrodynamics, 3rd edn. (John Wiley and Sons, New York, 1999)

  20. U. Kogelschatz, Y.S. Akishev, A.P. Napartovich, in Non-equilibrium air plasmas at atmospheric pressure, edited by K. Becker, U. Kogelschatz, K.H. Schoenbach, R.J. Barker (IOP Publishing, 2005), pp. 17–75

  21. U. Kogelschatz, Y.S. Akishev, K.H. Becker, E.E. Kunhardt, M. Kogoma, S. Kuo, M. Laroussi, A.P. Napartovich, S. Okazaki, K.H. Schoenbach, in Non-equilibrium air plasmas at atmospheric pressure, edited by K. Becker, U. Kogelschatz, K.H. Schoenbach, R.J. Barker (IOP Publishing, 2005), pp. 276–361

  22. J. Choi, T. Lee, I. Han, H. Baik, K. Song, Y. Lim, E. Lee, Plasma Source. Sci. Technol. 15, 416 (2006)

    Article  ADS  Google Scholar 

  23. H. Nassar, S. Pellerin, K. Musiol, O. Martinie, N. Pellerin, J. Cormier, J. Phys. D 37, 1904 (2004)

    Article  ADS  Google Scholar 

  24. K. Kozlov, H. Wagner, R. Brandenburg, P. Michel, J. Phys. D 34, 3164 (2001)

    Article  ADS  Google Scholar 

  25. Y. Ralchenko, A. Kramida, J. Reader, N. Team, NIST Atomic Spectra Database (version 3.1.5) (Gaithersburg, MD, 2008)

  26. J. Walsh, D. Liu, F. Iza, M. Rong, M. Kong, J. Phys. D 43, 32001 (2010)

    Article  Google Scholar 

  27. B. Gordiets, C. Ferreira, V. Guerra, J. Loureiro, J. Nahorny, D. Pagnon, M. Touzeau, M. Valle, IEEE Trans. Plasma Sci. 23, 750 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mahoney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahoney, J., Zhu, W., Johnson, V. et al. Electrical and optical emission measurements of a capillary dielectric barrier discharge. Eur. Phys. J. D 60, 441–447 (2010). https://doi.org/10.1140/epjd/e2010-00236-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00236-y

Keywords

Navigation