The European Physical Journal D

, Volume 60, Issue 2, pp 361–367 | Cite as

Dynamical origin of complex motor patterns

Nonlinear Dynamics

Abstract

Behavior emerges as the nervous system generates motor patterns in charge of driving a peripheral biomechanical device. For several cases in the animal kingdom, it has been identified that the motor patterns used in order to accomplish a diversity of tasks are the different solutions of a simple, low dimensional nonlinear dynamical system. Yet, motor patterns emerge from the interaction of an enormous number of individual dynamical units. In this work, we study the dynamics of the average activity of a large set of coupled excitable units which are periodically forced. We show that low dimensional, yet non trivial dynamics emerges. As a case study, we analyze the air sac pressure patterns used by domestic canaries during song, which consists of a succession of repetitions of different syllable types. We show that the pressure patterns used to generate different syllables can be approximated by the solutions of the investigated model. In this way, we are capable of integrating different description scales of our problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.S. Golubitsky, I. Stewart, B. Pietro-Luciano, J.J. Collins, Nature 410, 693 (1999) CrossRefADSGoogle Scholar
  2. 2.
    L.M. Alonso, J.A. Alliende, F. Goller, G.B. Mindlin, Phys. Rev. E 79, 041929 (2009) CrossRefADSGoogle Scholar
  3. 3.
    Y. Kuramoto, Self-entrainment of a population of coupled nonlinear oscillators, Lecture notes in Physics (Springer, New York, 1975), Vol. 39, pp. 420–422 Google Scholar
  4. 4.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A universal concept in nonlinear science (Cambridge University Press, Cambridge, 2001) Google Scholar
  5. 5.
    E. Ott, T.M. Antonsen, Chaos 18, 037113 (2008) CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    E. Ott, T.M. Antonsen, Chaos 19, 023117 (2009) CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    L.M. Childs, S.H. Strogatz, Chaos 18, 043128 (2008) CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    E.M. Izhikevich, IEEE Trans. Neural Netw. 10, 479 (1999) Google Scholar
  9. 9.
    F.C. Hoppensteadt, E.M. Izhikevich, Weakly connected neural networks (Springer-Verlag New York, 1997) Google Scholar
  10. 10.
    T. Gardner, G. Cecchi, M. Magnasco, R. Laje, G.B. Mindlin, Phys. Rev. Lett. 87, 208101 (2001) CrossRefADSGoogle Scholar
  11. 11.
    G.B. Mindlin, R. Laje, The physics of birdsong (Springer, 2005) Google Scholar
  12. 12.
    F. Goller, R.A. Suthers, J. Neurophysiol. 75, 867 (1996) Google Scholar
  13. 13.
    M.A. Trevisan, G.B. Mindlin, F. Goller, Phys. Rev. Lett. 96, 058103 (2006) CrossRefADSGoogle Scholar
  14. 14.
    R. Gilmore, M. Lefranc, The topology of chaos (Wiley, Hoboken, 2002) Google Scholar
  15. 15.
    M.S. Brainard, The anterior forebrain pathway and vocal plasticity, in Neuroscience of birdsong, edited by H.P. Zeigler, P. Marler (Cambridge University Press, Cambridge, 2008) Google Scholar
  16. 16.
    M. Mitchell, An introduction to genetic algorithms (MIT press, Cambridge, 1998) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Dept. of Physics, FCEyN, UBA Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations