Skip to main content
Log in

On plasma parameters of a self-organized plasma jet at atmospheric pressure

  • Topical issue: Microplasmas: Scientific Challenges and Technological opportunities
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

Electron temperature and electron concentration in the active zone of a miniaturized radio frequency (RF) non-thermal atmospheric pressure plasma jet in argon have been determined using two independent approaches: the spectroscopic measurement of the broadening of Balmer H\(_\beta\) and H\(_\gamma\) lines and a time-dependent, spatially two-dimensional fluid model of a single discharge filament. The plasma source has been configured as a capacitively coupled RF jet (27.12 MHz, 8 W generator output power) with two outer ring electrodes around a quartz capillary with diameter of 4.0 mm between which Ar flows at typical rates of 0.3 slm. The discharge has been operated in a self-organized mode, where equidistant, stationary filaments rotate regularly with a constant frequency at the inner wall of the outer capillary. For the purpose of calculating the spectral line broadening different models applicable at higher electron concentration have been evaluated. Resulting electron concentrations are between 2.2 and 3.3 × 1014 cm-3. The calculation according to the line broadening model provides electron temperatures between 20 000 and 30 000 K which is in agreement with the results of the fluid model calculations. Here, a broad radial profile with a maximal value of about 22 000 K in the centre of the column and an electron concentration of about 7 × 1013 cm-3 have been obtained. Moreover, the results of the model calculations reveal a structural change of the filament from the dielectric surface through the sheath to the column. The axially inhomogeneous region has an extension of about 0.5 mm. In the column a concentration of about 1013 cm-3 has been found for the excited argon atoms, whose collisions with electrons represent the most important ionization channel there.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Schütze, J.Y. Yeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hicks, IEEE Trans. Plasma Sci. 26, 1685 (1998)

    Article  ADS  Google Scholar 

  2. S.E. Babayan, J.Y. Jeong, V.J. Tu, J. Park, G.S. Selwyn, R.F. Hicks, Plasma Source. Sci. Technol. 7, 28 (1998)

    Article  Google Scholar 

  3. J. Janča, M. Klima, P. Slaviček, L. Zajičkova, Surf. Coat. Technol. 116, 547 (1999)

    Article  Google Scholar 

  4. J. Kousal, Z. Pokorna, A. Brablec, P. Slaviček, M. Klima, J. Janča, Czech. J. Phys. 52, 571 (2002)

    Article  Google Scholar 

  5. P. Slaviček, A. Brablec, V. Kapička, M. Klima, M. Šira, Acta Phys. Slovaca 55, 573 (2005)

    Google Scholar 

  6. R. Foest, E. Kindel, A. Ohl, M. Stieber, K.-D. Weltmann, Plasma Phys. Control. Fusion 47, B525 (2005)

    Article  Google Scholar 

  7. R. Foest, E. Kindel, H. Lange, A. Ohl, M. Stieber, K.-D. Weltmann, Contrib. Plasma Phys. 46, 119 (2007)

    Article  ADS  Google Scholar 

  8. J. Benedikt, V. Raballand, A. Yanguas-Gil, K. Focke, A. von Keudell, Plasma Phys. Control. Fusion 49, B419 (2007)

    Article  ADS  Google Scholar 

  9. M. Laroussi, T. Akan, Plasma Processes. Polym. 4, 777 (2007)

    Article  Google Scholar 

  10. K.H. Becker, U. Kogelschatz, K.H. Schoenbach, R.J. Barker, Non-equilibrium air plasmas at atmospheric pressure (Institute of Physics Publishing, Bristol, 2005)

  11. J. Schäfer, R. Foest, A. Quade, A. Ohl, K.-D. Weltmann, Eur. Phys. J. D 54, 211 (2009)

    Article  ADS  Google Scholar 

  12. J. Schäfer, R. Foest, A. Quade, A. Ohl, K.-D. Weltmann, J. Phys. D 41, 194010 (2008)

    Article  ADS  Google Scholar 

  13. J. Schäfer, R. Foest, A. Ohl, K.-D. Weltmann, Plasma Phys. Control. Fusion 51, 124045 (2009)

    Article  ADS  Google Scholar 

  14. Y.A. Gostinstev, Fluid Dyn. 4, 158 (1969)

    Google Scholar 

  15. K.G. Müller, Phys. Rev. A 37, 4836 (1988)

    Article  ADS  Google Scholar 

  16. I. Müller, E. Ammelt, H.-G. Purwins, Phys. Rev. Lett. 82, 3428 (1999)

    Article  ADS  Google Scholar 

  17. K.H. Schoenbach, M. Moselhy, W. Shi, Plasma Source. Sci. Technol. 13, 177 (2004)

    Article  ADS  Google Scholar 

  18. A. Brockhaus, R. Sauerbier, J. Engemann, Eur. Phys. J. Appl. Phys. 47, 22809 (2009)

    Article  Google Scholar 

  19. H.A. Lorenz, Proc. R. Acad. Sci. 8, 591 (1906)

    Google Scholar 

  20. H.R. Griem, A.C. Kolb, K.Y. Shen, Astrophys. J. 135, 272 (1962)

    Article  ADS  Google Scholar 

  21. H.R. Griem, M. Baranger, A.C. Kolb, G. Oertel, Phys. Rev. 125, 177 (1962)

    Article  MATH  ADS  Google Scholar 

  22. C.W. Allen, Astrophysical Quantities (The Athlone Press, London, 1964)

  23. H.R. Griem, Plasma Spectroscopy (Mc Graw-Hill, New York, 1964)

  24. A.W. Ali, H.R. Griem, Phys. Rev. A 140, 1044 (1965)

    Article  ADS  Google Scholar 

  25. P. Kepple, H.R. Griem, Phys. Rev. 173, 317 (1968)

    Article  ADS  Google Scholar 

  26. C.R. Vidal, J. Cooper, E.W. Smith, Astrophys. J. 25, 37 (1973)

    Article  ADS  Google Scholar 

  27. H.R. Griem, Spectral Line Broadening by Plasmas (Academic Press, 1974)

  28. N. Konjevic, J.R. Roberts, J. Phys. Chem. Ref. Data 5, 209 (1976)

    Article  ADS  Google Scholar 

  29. N. Konjevic, W.L. Wiese, J. Phys. Chem. Ref. Data 5, 259 (1976)

    Article  ADS  Google Scholar 

  30. A. Czernichowski, J. Chapelle, Acta Phys. Pol. A 63, 67 (1983)

    Google Scholar 

  31. N. Konjevic, M.S. Dimitrijevic, W.L. Wiese, J. Phys. Chem. Ref. Data 13, 619 (1984)

    Article  ADS  Google Scholar 

  32. N. Konjevic, W.L. Wiese, J. Phys. Chem. Ref. Data 19, 1307 (1990)

    Article  ADS  Google Scholar 

  33. R.F.G. Meulenbroeks, M.F.M. Steenbakkers, Z. Qing, M.C.M. van de Sanden, D.C. Schram, Phys. Rev. E 49, 2272 (1994)

    Article  ADS  Google Scholar 

  34. M.A. Gigosos, V. Cardenosos, J. Phys. B: At. Mol. Opt. Phys. 29, 4795 (1996)

    Article  ADS  Google Scholar 

  35. R. Konjevic, N. Konjevic, Spectrochim. Acta B 52, 2077 (1997)

    Article  ADS  Google Scholar 

  36. C. Trassy, A. Tazzen, Spectrochim. Acta B 54, 581 (1999)

    Article  ADS  Google Scholar 

  37. M.A. Gigosos, M.A. Gonzales, V. Cardenoso, Spectrochim. Acta B 58, 1489 (2003)

    Article  ADS  Google Scholar 

  38. J. Torres, J. Jonkers, M.J. van de Sade, J.J.A.M. van der Mullen, A. Gamero, A. Sola, J. Phys. D 36, L55 (2003)

    Article  ADS  Google Scholar 

  39. C. Yubero, M.D. Calzada, M.C. Garcia, J. Phys. Soc. Jpn 74, 2249 (2005)

    Article  ADS  Google Scholar 

  40. C. Yubero, M.C. Garcia, M.D. Calzada, Spectrochim. Acta B 61, 540 (2006)

    Article  ADS  Google Scholar 

  41. J. Torres, J.M. Palomares, A. Sola, J.J.A.M. van der Mullen, A. Gamero, J. Phys. D 40, 5929 (2007)

    Article  ADS  Google Scholar 

  42. E.W. Smith, J. Copper, C.R. Vidal, Phys. Rev. 185, 140 (1969)

    Article  ADS  Google Scholar 

  43. D. Voslamber, Z. Naturforsch. 24a, 1458 (1969)

    ADS  Google Scholar 

  44. C. de Izara, J. Phys. D 33, 1697 (2000)

    Article  ADS  Google Scholar 

  45. S. Gorchakov, D. Loffhagen, D. Uhrlandt, Phys. Rev. E 74, 066401 (2006)

    Article  ADS  Google Scholar 

  46. G.M. Lawrence, Phys. Rev. 175, 40 (1968)

    Article  ADS  Google Scholar 

  47. W.L. Wiese, J.W. Brault, K. Danzmann, V. Helbig, M. Kock, Phys. Rev. A 39, 2461 (1989)

    Article  ADS  Google Scholar 

  48. T. Johnson, A. Hunter, J. Appl. Phys. 51, 2406 (1980)

    Article  ADS  Google Scholar 

  49. J. Royal, A.E. Orel, Phys. Rev. A 73, 042706 (2006)

    Article  ADS  Google Scholar 

  50. P. Millet, A. Birot, H. Brunet, H. Dijolis, J. Galy, Y. Salamero, J. Phys. B: At. Mol. Phys. 15, 2935 (1982)

    Article  ADS  Google Scholar 

  51. H. Leyh, D. Loffhagen, R. Winkler, Comput. Phys. Commun. 113, 33 (1998)

    Article  MATH  ADS  Google Scholar 

  52. T. Holstein, Phys. Rev. 72, 1212 (1947)

    Article  MATH  ADS  Google Scholar 

  53. N. Balcon, G.J.M. Hagelaar, J.P. Boeuf, IEEE Trans. Plasma Sci. 36, 2782 (2008)

    Article  ADS  Google Scholar 

  54. http://www.esi-cfd.com, accessed in May 2010

  55. K. Hunger, Z. Astrophys. 39, 36 (1956)

    MATH  MathSciNet  ADS  Google Scholar 

  56. G.H. Diecke, H.M. Crosswhite, J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1961)

    Article  Google Scholar 

  57. J. Schäfer, A. Vogelsang, R. Foest, A. Ohl, Proc. 19th ISPC (Bochum, 2009), ID 298

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schäfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, J., Sigeneger, F., Foest, R. et al. On plasma parameters of a self-organized plasma jet at atmospheric pressure. Eur. Phys. J. D 60, 531–538 (2010). https://doi.org/10.1140/epjd/e2010-00222-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00222-5

Keywords

Navigation