Skip to main content
Log in

Spectroscopic measurements and electrical diagnostics of microhollow cathode discharges in argon flow at atmospheric pressure

  • Topical issue: Microplasmas: Scientific Challenges and Technological opportunities
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

This paper is dedicated to the study of the electrical and optical characteristics of direct current microhollow cathode discharges (MHCD) in argon flow. Experiments have been carried out in order to determine the so-called Paschen’s curves in a static open MHCD. Current-voltage characteristics were obtained as a function of the pressure and hole diameter. MHCD enable stable direct current discharge operation, which could be ignited for pressures ranging from 12 to 800 Torr, in a very wide range of current densities and electrodes materials. Optical emission spectroscopy and analysis of the spectral line broadening of plasma line emissions were performed in order to measure parameters such as electron number density (2–4 × 1014 cm\(^{-3})\), gas temperature (460–640 K), excitation temperature (~ 7000 K) and electron temperature (~ 8500 K), for current ranging from 7 to 15 mA. Lower gas temperature was measured compared to the static MHCD ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Foest, M. Schmidt, K. Becker, Int. J. Mass Spectrom. 248, 87 (2005)

    Google Scholar 

  2. K.H. Becker, K.H. Schoenbach, J.G. Eden, J. Phys. D 39, R55 (2006)

    Article  ADS  Google Scholar 

  3. E.E. Kunhardt, IEEE Trans. Plasma Sci. 28, 189 (2000)

    Article  ADS  Google Scholar 

  4. B.N. Sismanoglu, J. Amorim, Eur. Phys. J. Appl. Phys. 41, 165 (2008)

    Article  ADS  Google Scholar 

  5. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Spectrochim. Acta B 61, 2 (2006)

    Article  ADS  Google Scholar 

  6. S.D. Angel, A. Simon, Plasma Source. Sci. Technol. 16, B1 (2007)

    Article  ADS  Google Scholar 

  7. T. Kikuchi, Y. Hasegawa, H. Shirai, J. Phys. D 37, 1537 (2004)

    Article  ADS  Google Scholar 

  8. L. Baars-Hibbe, P. Sichler, C. Schrader, N. Lucas, K.H. Gericke, S. Buttgenbach, J. Phys. D 38, 510 (2005)

    Article  ADS  Google Scholar 

  9. D. Staack, B. Farouk, A. Gutsol, A. Fridman, Plasma Source. Sci. Technol. 17, 025013 (2008)

    Article  ADS  Google Scholar 

  10. B.N. Sismanoglu, J. Amorim, J.A. Souza-Corrêa, C. Oliveira, M.P. Gomes, Spectrochim. Acta B 64, 1287 (2009)

    Article  Google Scholar 

  11. H.R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964)

  12. H.R. Griem, Principles of Plasma Spectroscopy (University Press, Cambridge, 1997)

  13. C. Penache, M. Miclea, O. Hohn, S. Schoessler, T. Jahnke, K. Niemax, H. Schmidt-Boecking, Plasma Source. Sci. Technol. 11, 476 (2002)

    Article  ADS  Google Scholar 

  14. G.M. Petrov, J. Quant. Spectrosc. Radiat. Transfer 72, 281 (2002)

    Article  ADS  Google Scholar 

  15. H.G. Kuhn, Atomic Spectra (Academic Press, New York, 1969)

  16. C. Oliveira, J.A. Souza-Corrêa, M.P. Gomes, B.N. Sismanoglu, J. Amorim, Appl. Phys. Lett. 93, 041503 (2008)

    Article  ADS  Google Scholar 

  17. N. Konjevic, Phys. Rep. 316, 339 (1999)

    Article  ADS  Google Scholar 

  18. W.R. Hindmarsh, A.D. Petford, G. Smith, Proc. Roy. Soc. Lond. A 297, 296 (1967)

    Article  ADS  Google Scholar 

  19. H.R. Griem, Contrib. Plasma Phys. 40, 46 (2000)

    Article  ADS  Google Scholar 

  20. M.A. Gigosos, M.A. González, V. Cardeñoso, Spectrochim. Acta B 58, 1489 (2003)

    Article  ADS  Google Scholar 

  21. H.R. Griem, Spectral line broadening by plasmas(Academic Press, New York, 1974)

  22. M.A. Gigosos, V. Cardeñoso, J. Phys. B: At. Mol. Opt. Phys. 29, 4795 (1996)

    Article  ADS  Google Scholar 

  23. J. Cooper, E.W. Smith, C.R. Vidal, J. Phys. B: At. Mol. Phys. 7, L101 (1974)

    Article  ADS  Google Scholar 

  24. C.O. Laux, T.G. Spence, C.H. Kruger, R.N. Zare, Plasma Source. Sci. Technol. 12, 125 (2003)

    Article  ADS  Google Scholar 

  25. C. Yubero, M.C. Garcia, M.D. Calzada, Spectrochim. Acta B 61, 540 (2006)

    Article  ADS  Google Scholar 

  26. A. Sola, M.D. Calzada, A. Gamero, J. Phys. D 28, 1099 (1995)

    Article  ADS  Google Scholar 

  27. www.nist.gov, accessed in February 2010

  28. C. Yubero, M.S. Dimitrijević, M.C. García, M.D. Calzada, Spectrochim. Acta B 62, 169 (2007)

    Article  ADS  Google Scholar 

  29. M.D. Calzada, Memor. Soc. Astronom. Ital. 7, 198 (2005)

    Google Scholar 

  30. J. Happold, P. Lindner, B. Roth, J. Phys. D 39, 3615 (2006)

    Article  ADS  Google Scholar 

  31. K.H. Schoenbach, A. El-Habachi, W. Shi, M. Ciocca, Plasma Source. Sci. Technol. 6, 468 (1997)

    Article  ADS  Google Scholar 

  32. X. Aubert, G. Bauville, J. Guillon, B. Lacour, V. Puech, A. Rousseau, Plasma Source. Sci. Technol. 16, 23 (2007)

    Article  ADS  Google Scholar 

  33. K.H. Schoenbach, M. Moselhy, W. Shu, R. Bentley, J. Vac. Sci. Technol. A 21, 1260 (2003)

    Article  ADS  Google Scholar 

  34. H.D. Hagstrom, Phys. Rev. 104, 309 (1956)

    Article  ADS  Google Scholar 

  35. Yu.P. Raizer, Gas Discharge Physics(Springer-Verlag, New York, 1997)

  36. M. Miclea, K. Kunze, U. Heitmann, S. Florek, J. Franzke, K. Niemax, J. Phys. D 38, 1709 (2005)

    Article  ADS  Google Scholar 

  37. M.D. Calzada, M. Moisan, A. Gamero, A. Sola, J. Appl. Phys. 80, 46 (1996)

    Article  ADS  Google Scholar 

  38. M. Christova, E. Castaños-Martinez, M.D. Calzada, Y. Kabouzi, J.M. Luque, M. Moisan, Appl. Spectrosc. 58, 1032 (2004)

    Article  ADS  Google Scholar 

  39. S. Yugeswaran, V. Selvarajan, Vacuum 81, 347 (2006)

    Article  Google Scholar 

  40. A. Yanguas-Gil, K. Focke, J. Benedikt, A. von Keudell, J. Appl. Phys. 101, 1033071 (2007)

    Article  Google Scholar 

  41. S. Djurovic, R. Kobilarov, B. Vujicic, Bull. Astron. Belgrade 153, 41 (1996)

    ADS  Google Scholar 

  42. M. Moselhy, K.F. Petzenhauser, K.H. Schoenbach, J. Phys. D 36, 2922 (2003)

    Google Scholar 

  43. A.D. White, J. Appl. Phys. 30, 711 (1959)

    Article  ADS  Google Scholar 

  44. M.A. Liebermann, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing(John Wiley & Sons Inc., New York, 1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Sismanoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sismanoglu, B., Grigorov, K., Caetano, R. et al. Spectroscopic measurements and electrical diagnostics of microhollow cathode discharges in argon flow at atmospheric pressure. Eur. Phys. J. D 60, 505–516 (2010). https://doi.org/10.1140/epjd/e2010-00219-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00219-0

Keywords

Navigation