Skip to main content
Log in

Excitation frequency effects on atmospheric-pressure helium RF microplasmas: plasma density, electron energy and plasma impedance

  • Topical issue: Microplasmas: Scientific Challenges and Technological opportunities
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

The effects of the driving RF frequency on the properties of low temperature atmospheric pressure helium microplasmas are discussed in light of simulation results of a 500 μm microdischarge driven at constant input power with a 10 MHz–2.45 GHz voltage source. The electron density is found to be a non-monotonic function of the driving frequency and agrees with experimental observations made in different frequency bands with different devices. The physics underpinning this non-monotonic behaviour are investigated and the increasing penetration of the electric field as frequency increases is identified as a key factor. Additionally, the relationship between the plasma impedance and the mean plasma density is studied, and the validity and accuracy of equations commonly used to infer the plasma density from experimental impedance measurements discussed. While this method can provide quantitative estimations, the accuracy suffers when the discharge operates in the γ-mode or when the displacement current across the bulk plasma is not negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Iza, G.J. Kim, S.M. Lee, J.K. Lee, J.L. Walsh, Y.T. Zhang, M.G. Kong, Plasma Process. Polym. 5, 322 (2008)

    Article  Google Scholar 

  2. K.H. Becker, K.H. Schoebach, J.G. Eden, J. Phys. D 39, R55 (2006)

    Article  ADS  Google Scholar 

  3. K. Tachibana, IEEJ Trans. elec. Electron. Eng. 1, 145 (2006)

    Article  Google Scholar 

  4. V. Karanassios, Spectrochim. Acta B 59, 909 (2004)

    Article  ADS  Google Scholar 

  5. F. Iza, J.K. Lee, J. Vac. Sci. Technol. A 24, 1366 (2006)

    Article  Google Scholar 

  6. J.H. Kwon, S.J. You, J.H. Kim, Y.H. Shin, Appl. Phys. Lett. 96, 081502 (2010)

    Article  ADS  Google Scholar 

  7. M. Lapke, T. Mussenbrock, R.P. Brinkmann, Appl. Phys. Lett. 93, 051502 (2008)

    Article  ADS  Google Scholar 

  8. N.S.J. Braithwaite, R.N. Franklin, Plasma Sources Sci. Technol. 18, 014008 (2009)

    Article  ADS  Google Scholar 

  9. J. Schulze, E. Schüngel, Z. Donkó, D. Luggehölscher, U. Czarnetzki, J. Phys. D 43, 124016 (2010)

    Article  ADS  Google Scholar 

  10. S.G. Belostotskiy, T. Ouk, V.M. Donnelly, D.J. Economou, N. Sadeghi, J. Appl. Phys. 107, 053305 (2010)

    Article  ADS  Google Scholar 

  11. P. Bruggeman, F. Iza, P. Guns, D. Lauwers, M.G. Kong, Y.A. Gonzalvo, C. Leys, D.C. Schram, Plasma Sources Sci. Technol. 19, 015016 (2010)

    Article  ADS  Google Scholar 

  12. N. Knake, K. Niemi, S. Reuter, V. Schulz-von der Gathen, J. Winter, Appl. Phys. Lett. 93, 131503 (2008)

    Article  ADS  Google Scholar 

  13. M. Miclea, K. Kunze, J. Franzke, K. Niemax, J. Anal. At. Spectrom. 19, 990 (2004)

    Article  Google Scholar 

  14. K. Tachibana, K. Mizokami, N. Kosugi, T. Sakai, IEEE Trans. Plasma Sci. 31, 68 (2003)

    Article  ADS  Google Scholar 

  15. X. Zhu, Y. Pu, J. Phys. D, 43, 015204 (2010)

    Google Scholar 

  16. Y. Aranda Gonzalvo, T.D. Whitmore, J.A. Rees, D.L. Seymour, E. Stoffels, J. Vac. Sci. Technol. A 24, 550 (2006)

    Article  Google Scholar 

  17. P. Bruggeman, F. Iza, D. Lauwers, Y.A. Gonzalvo, J. Phys. D 43, 012003 (2010)

    Article  ADS  Google Scholar 

  18. D. Ellerweg, J. Benedikt, A. von Keudell, N. Knake, V. Schulz-von der Gathen, New J. Phys. 12, 013021 (2010)

    Article  ADS  Google Scholar 

  19. H.C. Kim, F. Iza, S.S. Yang, M. Radmilovic-Radjenovic, J.K. Lee, J. Phys. D 38, R283 (2005)

    Article  ADS  Google Scholar 

  20. J.V. Dijk, G.M.W. Kroesen, A. Bogaerts, J. Phys. D 42, 190301 (2009)

    Article  Google Scholar 

  21. D. Liu, F. Iza, M.G. Kong, Plasma Process. Polym. 6, 446 (2009)

    Article  Google Scholar 

  22. M. Meyyappan, T.R. Govindan, J. Appl. Phys. 74, 2250 (1993)

    Article  ADS  Google Scholar 

  23. J. Xue, J.A. Hopwood, IEEE Trans. Plasma Sci. 37, 816 (2009)

    Article  ADS  Google Scholar 

  24. F. Iza, J.K. Lee, M.G. Kong, Phys. Rev. Lett. 99, 075004 (2007)

    Article  ADS  Google Scholar 

  25. F. Iza, S.S. Yang, H.C. Kim, J.K. Lee, J. Appl. Phys. 98, 043302 (2005)

    Article  ADS  Google Scholar 

  26. G.J. Kim, F. Iza, J.K. Lee, J. Phys. D 39, 4386 (2006)

    Article  ADS  Google Scholar 

  27. M. Kushner, J. Phys. D 42, 194013 (2009)

    Article  ADS  Google Scholar 

  28. J.J. Shi, M.G. Kong, Phys. Rev. Lett. 96, 105009 (2006)

    Article  ADS  Google Scholar 

  29. D. Liu, F. Iza, M.G. Kong, Appl. Phys. Lett. 95, 031501 (2009)

    Article  ADS  Google Scholar 

  30. X. Yang, M. Moravej, G.R. Nowling, S.E. Babayan, J. Panelon, J.P. Chang, R.F. Hicks, Plasma Sources Sci. Technol. 14, 314 (2005)

    Article  Google Scholar 

  31. J.J. Shi, M.G. Kong, J. Appl. Phys. 97, 023306 (2004)

    Article  ADS  Google Scholar 

  32. S.Y. Moon, J.K. Rhee, D.B. Kim, W. Choe, Phys. Plasmas 13, 033502 (2006)

    Article  ADS  Google Scholar 

  33. D.W. Liu, F. Iza, M.G. Kong, Appl. Phys. Lett. 93, 261503 (2008)

    Article  ADS  Google Scholar 

  34. M.A. Lieberman, A.J. Lichtenberg, in Principles of Plasma Discharges and Material Processing, 2nd edn. (John Wiley and Sons, Hoboken NJ, 2005), pp. 93–96

  35. F. Iza, J. Hopwood, Plasma Sources Sci. Technol. 14, 397 (2005)

    Article  ADS  Google Scholar 

  36. J. Choi, F. Iza, H.J. Do, J.K. Lee, M.H Cho, Plasma Sources Sci. Technol. 18, 025029 (2009)

    Article  ADS  Google Scholar 

  37. O. Sakai, K. Tachibaba, IEEE Trans. Plasma Sci. 34, 80 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Iza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKay, K., Iza, F. & Kong, M. Excitation frequency effects on atmospheric-pressure helium RF microplasmas: plasma density, electron energy and plasma impedance. Eur. Phys. J. D 60, 497–503 (2010). https://doi.org/10.1140/epjd/e2010-00191-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00191-7

Keywords

Navigation