Skip to main content

Advertisement

Log in

High energy radiation femtochemistry of water molecules: early electron-radical pairs processes

  • Topical issue on Molecular level assessments of radiation biodamage
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The damages triggered by ionizing radiation on chemical and biological targets depend on the survival probability of radicals produced in clusters of ionization-excitation events. In this paper, we report on femtolysis (FEMTOsecond radioLYSIS) of pure liquid water using an innovative laser produced high-energy, ultra-short electron bunches in the 2.5-15 MeV range and high energy radiation femtochemistry (HERF) measurements. The short-time monitoring of a primary reducing radical, hydrated electron e\(^{-}_{aq}\), has been performed in confined ionization spaces (nascent spurs). The calculated yield of hydrated electrons at early time, \(G({\rm e}^{-}_{aq})_{ET}\), is estimated to be 6.5 ± 0.5 (number/100 eV) at t ~ 5 ps after the ultrafast energy deposition. This estimated value is high compare to (i) the available data of previous works that used scavenging techniques; (ii) the predictions of stochastic water radiolysis modelling for which the initial behaviour of hydrated electron is investigated in the framework of a classical diffusion regime of independent pairs. The HERF developments give new insights into the early ubiquitous radical escape probability in nascent aqueous spurs and emphasize the importance of short-lived solvent bridged electron-radical complexes [\({\rm H}_{3}{\rm O}^{+...}\)\({\rm e}_{aq}^{-}\) ..\({\rm OH}]_{n{\rm H}_2{\rm O}}\) (non-independent pairs). A complete understanding of the G(\({\rm e}^{-}_{aq})_{ET}\) value needs to account for quantum aspects of 1s-like trapped electron ground state and neoformed prototropic radicals that govern ultra-fast recombination processes within these non-independent pair configurations. Femtolysis data emphasize that within a time-dependent non-diffusion regime, spatio-temporal correlations between hydrated electron and nearest neighbours OH radical or hydrated proton (\({\rm H}_{3}{\rm O}^{+}\)) would assist ultrafast anisotropic 1D recombination within solvent bridged electron-radical complexes. The emerging HERF domain would provide guidance for understanding of ultrashort-lived sub-structure of tracks and stimulate future semi-quantum simulations on prethermal radical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Water Science Reviews, edited by F. Franck (Cambridge University Press, Cambridge, 1985-1989), Vol. 1-4

  2. Water and aqueous solutions, edited by G.W. Neilson, J.E. Enderby (Adam Hilger, Boston, 1986)

  3. G.V. Buxton, Proc. Roy. Soc. Lond. A 328, 1 (1972)

    Article  ADS  Google Scholar 

  4. N.V. Klassen, In Radiation Chemistry, edited by Farhataziz, M.A. Rodgers (VCH, Weinheim, 1987)

  5. H.G. Paretzke, Radiation track structure theory, in Kinetics of nonhomogeneous processes, edited by G.R. Freeman (Wiley, New York, 1987), pp. 89-170

  6. R.D. Wood, Ann. Rev. Biochem. 65, 135 (1996)

    Article  Google Scholar 

  7. Photochemistry and Radiation Chemistry, edited by J.F. Wishart, D.G. Nocera, Adv. Chem. Series (ACS, Washington, 1998)

  8. F. Zemlin, R. Schuster, E. Beckmann, J.L. Carrascosa, J.M. Valpuesta, G. Ertl, Nature 399, 51 (1999)

    Article  ADS  Google Scholar 

  9. Radiation Chemistry: Present Status and Future Trends, edited by C.D. Jonah, B.S.M. Madhava Rao (Elsevier, Amsterdam, 2001)

  10. N. Saleh, K. Flippo, K. Nemoto, D. Umstadter, R.A. Crowell, C.D. Jonah, A.D. Trifunac, Rev. Sci. Instrum. 71, 2305 (2000)

    Article  ADS  Google Scholar 

  11. Y.E. Dubrova, M. Plumb, B. Gutierrez, E. Boulton, A.J. Jeffreys, Nature 405, 37 (2002)

    Article  ADS  Google Scholar 

  12. W. Friedland, P. Jacob, H.G. Paretzeke, M. Merzagora, A. Ottolenghi, Radiat. Environ. Biophys. 38, 39 (1999)

    Article  Google Scholar 

  13. W. Friedland, H.G. Paretzke, F. Ballarini, A. Ottolenghi, G. Kreth, C. Cremer, Radiat. Environ. Biophys. 47, 49 (2008)

    Article  Google Scholar 

  14. Free-radical-Induced DNA Damage and its Repair, edited by C. Von Sonntag (Springer, Heidelberg, 2006)

  15. Radiation induced molecular phenomena in nucleic acids, edited by M Shukla, J. Leszczynski (Springer, 2008)

  16. A. Joubert, K.M. Zimmerman, Z. Bencokova, J. Gastaldo, N. Cahvaudra, V. Favaudon, C.F. Arlett, N. Foray, Int. J. Radiat. Biol. 84, 107 (2008)

    Article  Google Scholar 

  17. E. Surdutovich, O.I. Obolensky, E. Scifoni, I. Pshenichnow, I. Mishustin, A.V. Solov’yov, W. Greiner, Eur. Phys. J. D 51, 63 (2009)

    Article  ADS  Google Scholar 

  18. E.J. Hart, M. Anbar, The Hydrated Electron (Wiley, New York, 1970)

  19. K.Y. Lam, J.W. Hunt, Int. J. Radiat. Phys. Chem. 7, 317 (1975)

    Article  Google Scholar 

  20. J.E. Aldrich, K.Y. Lam, P.C. Shragge, J.W. Hunt, Radiat. Res. 63, 42 (1975)

    Article  Google Scholar 

  21. G. Czapski, E. Peled, J. Phys. Chem. 77, 893 (1973)

    Article  Google Scholar 

  22. D. Razem, W.H. Hamill, J. Phys. Chem. 81, 1625 (1977)

    Article  Google Scholar 

  23. C.D. Jonah, J.R. Miller, E.R. Hart, M.S. Matheson, J. Phys. Chem. 79, 2705 (1975)

    Article  Google Scholar 

  24. C.D. Jonah, J.R. Miller, M.S. Matheson, J. Phys. Chem. 81, 1618 (1977)

    Article  Google Scholar 

  25. M.A. Lewis, C.D. Jonah, J. Phys. Chem. 90, 5367 (1986)

    Article  Google Scholar 

  26. The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis, edited by J.H. Baxendale, F. Busi (Reidel Publishing Company, Dordrecht, Holland, 1982)

  27. S.M. Pimblott, J.A. LaVerne, A. Mozumder, N.J.B. Green, J. Phys. Chem. 94, 488 (1990)

    Article  Google Scholar 

  28. S.M. Pimblott, J. Phys. Chem. 95, 6946 (1991)

    Article  Google Scholar 

  29. S.M. Pimblott, A. Mozumder, J. Phys. Chem. 95, 1291 (1991)

    Google Scholar 

  30. S.M. Pimblott, J.A. LaVerne, J. Phys. Chem. A 101, 5828 (1997)

    Article  Google Scholar 

  31. D.T. Goodhead, The initial physical damage produced by ionising radiation, Int. J. Radiat. Biol. 56, 623 (1989)

    Article  Google Scholar 

  32. J.W. Boag, E.J. Hart, Nature 197, 47 (1963)

    Article  ADS  Google Scholar 

  33. B.D. Michel, E.J. Hart, K.H. Schmidt, J. Phys. Chem. 75, 2798 (1971)

    Article  Google Scholar 

  34. W.J. Hamill, Phys. Chem. 73, 1341 (1969)

    Article  Google Scholar 

  35. S. Khorana, W.H. Hamill, J. Phys. Chem. 75, 3081 (1971)

    Article  Google Scholar 

  36. R.K. Wolff, M.J. Bronskill, J.W. Hunt, J. Chem. Phys. 53, 4211 (1970)

    Article  ADS  Google Scholar 

  37. J.E. Aldrich, M.J. Bonskill, R.K. Wolff, J.W. Hunt, J. Chem. Phys. 55, 530 (1971)

    Article  ADS  Google Scholar 

  38. R.K. Wolff, J.E. Aldrich, T. Penner, J.W. Hunt, J. Phys. Chem. 79, 210 (1975)

    Article  Google Scholar 

  39. C. Gopinathan, G. Girija, Radiat. Phys. Chem. 21, 209 (1983)

    ADS  Google Scholar 

  40. C.D. Jonah, E.J. Hart, M.S. Matheson J. Phys. Chem. 77, 1838 (1973)

    Google Scholar 

  41. C.D. Jonah, M.S. Matheson, J.R. Miller, E.J. Hart, J. Phys. Chem. 80, 1267 (1976)

    Article  Google Scholar 

  42. C.D. Jonah, D.M. Bartels, A.C. Chernovitz, Radiat. Phys. Chem. 34, 145 (1989)

    Google Scholar 

  43. D.M. Bartels, M.T. Craw, P. Han, P, A.D. Trifunac, J. Phys. Chem. 93, 2412 (1989)

    Article  Google Scholar 

  44. P. Han, D.M. Bartels, J. Phys. Chem. 94, 5824 (1990)

    Article  Google Scholar 

  45. I.G. Kaplan, A.M. Miterev, V.Y Sukhonosov, Radiat. Phys. Chem. 36, 493 (1990)

    Google Scholar 

  46. T. Goulet, J.P. Jay-Gerin, J. Chem. Phys. 96, 5076 (1992)

    Article  ADS  Google Scholar 

  47. Y. Frongillo, T. Goulet, M.J. Fraser, V. Cobut, J.P. Patau, J.P. Jay-Gerin, Radiat. Phys. Chem. 51, 245 (1998)

    Article  ADS  Google Scholar 

  48. Y. Muroya, J. Meesungnoen, J.P. Jay-Gerin, A. Filali-Mouhin, T. Goulet, Y. Katsumura, S. Mankhetkorn, Can. J. Chem. 80, 1367 (2002)

    Article  Google Scholar 

  49. S.M. Pimblott, J. Phys. Chem. 96, 4485 (1992)

    Article  Google Scholar 

  50. S.M. Pimblott, J.A. LaVerne, D. Bartels, C.D. Jonah, J. Phys. Chem. 100, 9412 (1996)

    Article  Google Scholar 

  51. S.M. Pimblott, J.A. LaVerne, J. Phys. Chem. A 102, 2967 (1998)

    Article  Google Scholar 

  52. Kinetics of Nonhomogeneous Processes, edited by G.R. Freeman (John Wiley & Sons, New York, 1987)

  53. D.M. Bartels, A.R. Cook, M. Mudaliar, C.D. Jonah, J. Phys. Chem. A 104, 1686 (2000) and references therein

    Article  Google Scholar 

  54. Y. Gauduel, S. Pommeret, A. Antonetti, Chem. Phys. 189, 1 (1990)

    Article  Google Scholar 

  55. Y. Gauduel, S. Pommeret, A. Migus, A. Antonetti, J. Phys. Chem. 93, 3880 (1989)

    Article  Google Scholar 

  56. Y. Gauduel, S. Pommeret, A. Antonetti, J. Phys. Chem. 97, 134 (1993)

    Article  Google Scholar 

  57. S. Pommeret, A. Antonetti, Y. Gauduel, J. Am. Chem. Soc. 113, 9105 (1991)

    Article  Google Scholar 

  58. Y. Gauduel, in Ultra-fast Reaction Dynamics and Solvent Effects, edited by Y. Gauduel, P.J. Rossky (AIP Press, New York, 1994)

  59. J. Belloni, H. Monard, F. Gobert, J.P. Larbre, A. Demarque, A. et al., Nucl. Instrum. Meth. Phys. Res. A 539, 527 (2005)

    Article  ADS  Google Scholar 

  60. F.Y. You, G.R. Freeman, J. Phys. Chem. 83, 2383 (1979)

    Article  Google Scholar 

  61. Y. Gauduel, J.L. Martin, A. Migus, A. Antonetti, Ultra-fast Phenomena V, edited by G.R. Fleming, Siegman (Springer Verlag, New York, 1986), Vol. 308

  62. A. Migus, Y. Gauduel, J.L. Martin, A. Antonetti, Phys. Rev. Lett. 58, 1559 (1987)

    Article  ADS  Google Scholar 

  63. Y. Gauduel, S. Pommeret, A. Migus, A. Antonetti, Rad. Phys. Chem. 34, 5 (1989)

    Google Scholar 

  64. J.C. Alfano, P.W. Walhout, Y. Kimura, P.F. Barbara, J. Chem. Phys. 98, 5996 (1993)

    Article  ADS  Google Scholar 

  65. Y. Kimura et al., J. Phys. Chem. 98, 3450l (1994)

    Article  Google Scholar 

  66. C. Silva, P.K. Walhout, K. Yokoyama, P.F. Barbara, Phys. Rev. Lett. 80, 1086 (1998)

    Article  ADS  Google Scholar 

  67. K. Yokoyama, C. Silva, D.H. Son, P.K. Walhout, P.F. Barbara, J. Phys. Chem. 102, 6957 (1998)

    Google Scholar 

  68. A. Reuther, A. Laubereau, D.N. Nikogosyan, J. Phys. Chem. 100, 16794 (1996)

    Article  Google Scholar 

  69. A. Assel, R. Laenen, A. Laubereau, J. Chem. Phys. 111, 6869 (1999)

    Article  ADS  Google Scholar 

  70. R. Laenen, T. Roth, J. Mol. Struct. 37, 598 (2001)

    Google Scholar 

  71. M.F. Emde, A. Baltuska, A. Kummrow, M.S. Pshenichnikov, D.A. Wiersma, Phys. Rev. Lett. 80, 4645 (1998)

    Article  ADS  Google Scholar 

  72. P.J. Rossky, J. Opt. Soc. Am. B 7, 1727 (1990)

    Article  ADS  Google Scholar 

  73. F. Webster, P.J. Rossky, R.A. Friesner, Comput. Phys. Commun. 63, 494 (1991)

    Article  MATH  ADS  Google Scholar 

  74. F. Webster, J. Schnitker, M. Friedrichs, R.A. Friesner, P.J. Rossky, Phys. Rev. Lett. 66, 3172 (1991)

    Article  ADS  Google Scholar 

  75. F. Webster, E.T. Wang, P.J. Rossky, R.A. Friesner, J. Chem. Phys. 100, 4835 (1994)

    Article  ADS  Google Scholar 

  76. O.V. Prezhdo, P.J. Rossky, J. Chem. Phys. 107, 5863 (1997)

    Article  ADS  Google Scholar 

  77. C.Y. Yang, K.F. Wong, M.S. Skaf, P.J. Rossky, J. Chem. Phys. 114, 3598 (2001)

    Article  ADS  Google Scholar 

  78. R.B. Barnett, U. Landman, A. Nitzan, J. Chem. Phys. 90, 4413 (1989)

    Article  ADS  Google Scholar 

  79. R.B. Barnett, U. Landman, A. Nitzan, J. Chem. Phys. 93, 8187 (1990)

    Article  ADS  Google Scholar 

  80. E. Neria, A. Nitzan, R.N. Barnett, U. Landman, Phys. Rev. Lett. 67, 1011 (1991)

    Article  ADS  Google Scholar 

  81. G. Makov, A. Nitzan, J. Phys. Chem. 98, 3459 (1994)

    Article  Google Scholar 

  82. D. Borgis, A. Staib, Chem. Phys. Lett. 230, 405 (1994)

    Article  ADS  Google Scholar 

  83. A. Staib, D. Borgis, J. Chem. Phys. 103, 2642 (1995)

    Article  ADS  Google Scholar 

  84. M. Sprik, M.L. Klein, J. Chem. Phys. 89, 7556 (1988)

    Article  ADS  Google Scholar 

  85. K. Laasonen, M. Sprik, M. Parrinello, R. Car, J. Chem. Phys. 99, 9080 (1993)

    Article  ADS  Google Scholar 

  86. M. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, J. Phys. Chem. 99, 5749 (1995)

    Article  Google Scholar 

  87. M. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, J. Chem. Phys. 103, 150 (1995)

    Article  ADS  Google Scholar 

  88. S. Pommeret, Y. Gauduel, J. Phys. Chem. 93, 4126 (1991)

    Article  Google Scholar 

  89. C.D. Jonah, C. Romero, Chem. Phys. Lett. 123, 209 (1986)

    Article  ADS  Google Scholar 

  90. C. Romero, C.D. Jonah, J. Chem. Phys. 129, 253 (1989)

    Article  Google Scholar 

  91. W.M. Bartczak, M. Hilczer, J. Kroh, J. Phys. Chem. 91, 3834 (1987)

    Article  Google Scholar 

  92. W.M. Bartczak, K. Pernal, Comp. Chem. 24, 469 (2000)

    Article  Google Scholar 

  93. H.W. Richter, Photochemistry and Radiation Chemistry, Adv. Chem. Series, edited by J.F. Wishart, D.G. Nocera (ACS, Washington, 1998), p. 5

  94. Y. Muroya, M. Lin, G. Wu, H. Iijima, K. Yoshii, T. Ueda, H. Kudo, Y. Katsumura, Radiat. Phys. Chem. 72, 169 (2005) and references therein

    Article  ADS  Google Scholar 

  95. V. Malka, J. Faure, J.R. Marques, F. Amiranoff, J.P. Rousseau, S. Ranc, J.P. Chambaret, Z. Najmudin, B. Warton, P. Mora, A. Solodov, Phys. Plasmas 8, 2605 (2001)

    Article  ADS  Google Scholar 

  96. V. Malka, S. Fritzler, E. Lefebvre, M.M. Aleonard, F. Burgy, J.P. Chambaret, J.F. Chemlin, K. Krushelnick, G. Malka, S.P.D. Mangles, Z. Najmudin, M. Pittman, J.P. Rousseau, J.N. Scheurer, B. Walton, A.E. Dangor, Science 298, 1596 (2002)

    Article  ADS  Google Scholar 

  97. S. Fritzler, K. Ta Phuoc, V. Malka, A. Rousse, E. Lefebvre, Appl. Phys. Lett., 83, 3888 (2003)

    Google Scholar 

  98. S. Fritzler, Particle sources with high-intensity lasers: a tool for plasma diagnostics and an innovative source for applications, Ph.D. thesis, Palaiseau, 2003

  99. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev Gordienko, E. Lefebvre, J.P. Rousseau, F. Burgy, V. Malka, Nature 431, 541 (2004)

    Article  ADS  Google Scholar 

  100. R.A. Crowell, I.A. Shkrob, D.A. Oulianov, O. Korovyanko, D.J. Gosztola, Y. Li, R. Rey de Castro, Nucl. Instrum. Meth. Phys. Res. 241, 9 (2005)

    Article  ADS  Google Scholar 

  101. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka, Nature 444, 737 (2006)

    Article  ADS  Google Scholar 

  102. E. Esarey, C.B. Schroeder, W.P. Leemans, Rev. Mod. Phys. 81, 1229 (2009)

    Article  ADS  Google Scholar 

  103. D.A. Oulianov, R.A. Crowell, D.J. Gosztola, I.A. Shkrob, O.J. Korovyanko, R.C. Rey-de-Castro, J. Appl. Phys. 101, 053102-1-9 (2007)

    Google Scholar 

  104. V. Malka, J. Faure, Y. Gauduel, E. Lefebvre, A. Rousse, K. Ta Phuoc, Nature Phys. 4, 447 (2008)

    Article  ADS  Google Scholar 

  105. W. Bartczak, A. Hummel, J. Chem. Phys. 87, 5222 (1987)

    Article  ADS  Google Scholar 

  106. Y. Hirata, N. Mataga, Y. Sakata, S. Misumi, J. Phys. Chem. 90, 6065 (1986)

    Article  Google Scholar 

  107. T.W. Scott, C. Braun, Can. J. Chem. 63, 228 (1985)

    Article  Google Scholar 

  108. Y. Gauduel, S. Pommeret, N. Yamada, A. Migus, A. Antonetti, J. Am. Chem. Soc. 111, 4974 (1989)

    Article  Google Scholar 

  109. C.V. Shank, R. Yen, R.L. Fork, J. Orenstein, G.L. Baker, Phys. Rev. Lett. 49, 1660 (1982)

    Article  ADS  Google Scholar 

  110. A. Plonka, Radiat. Phys. Chem. 39, 17 (1992)

    Google Scholar 

  111. A. Plonka, Annu. Rep. Chem. Section C 94, 89 (1998)

    Article  Google Scholar 

  112. Y. Gauduel, in Ultrafast Dynamics of Chemical Systems, edited by J.D. Simon (Kluwer Academic Publishers, Amsterdam, 1994)

  113. B. Halle, G. Karlstrom, J. Chem. Soc. Faraday Trans. 2 79, 1031 (1983)

    Article  Google Scholar 

  114. J.E. Turner, J.L. Magee, A. Wright, A. Chatterjee, R.N. Hamm, R.H. Ritchie, Rad. Res. 96, 437 (1983)

    Article  Google Scholar 

  115. H. Gelabert, Y. Gauduel, J. Phys. Chem. 100, 13993 (1996)

    Article  Google Scholar 

  116. A. Belch, M. Berkowitz, J.A. Mc Cammon, J. Am. Chem. Soc. 115, 9692 (1993)

    Article  Google Scholar 

  117. D. Lu, S.J. Singer, J. Chem. Phys. 105, 3700 (1996)

    Article  ADS  Google Scholar 

  118. Y. Gauduel, S. Pommeret, A. Migus, A. Antonetti, J. Phys. Chem. 93, 3880 (1989)

    Article  Google Scholar 

  119. Y. Gauduel, S. Pommeret, A. Migus, A. Antonetti, J. Phys. Chem. 95, 533 (1991)

    Article  Google Scholar 

  120. B. Brozek-Pluska, D. Gliger, A. Hallou, V. Malka, Y.A. Gauduel, Rad. Phys. Chem. 72, 149 (2005)

    Article  ADS  Google Scholar 

  121. Y.A. Gauduel, Femtochemistry: Lasers to investigate ultrafast reactions, in Lasers in Chemistry, edited by M. Lackner (VCH, 2008), Vol. 2

  122. V. Cobut, Y. Frongillo, J.P. Patau, T. Goulet, M.J. Fraser, J.P. Jay-Gerin, Radiat. Phys. Chem. 51, 229 (1998)

    Article  ADS  Google Scholar 

  123. B. Gervais, M. Beuve, G.H. Olivera, M.E. Galassi, Tadiat. Phys. Chem. 75, 493 (2006)

    ADS  Google Scholar 

  124. M.S. Kreipl, W. Friedland, H.G. Paretzke, Radiat Environ. Biophys. 48, 11 (2009)

    Article  Google Scholar 

  125. M.S. Kreipl, W. Friedland, H.G. Paretzke, Radiat Environ. Biophys. 48, 349 (2009) and references therein

    Article  Google Scholar 

  126. N.J.B. Green, M.J. Pilling, S.M. Pimblott, P. Clifford, J. Phys. Chem. 94, 251 (1990)

    Article  Google Scholar 

  127. R. Vuilleumier, D. Borgis, J. Phys. Chem. B 102, 4261 (1998)

    Article  Google Scholar 

  128. L. Turi, M.P. Gaigeot, N. Levy, D. Borgis, J. Chem. Phys. 114, 7805 (2001)

    Article  ADS  Google Scholar 

  129. T. Sumiyoshi, M. Katayama, Chem. Lett. 1887 (1982)

  130. T. Sumiyoshi, K. Tsugawa, T. Yamada, M. Katayama, Bull. Chem. Soc. Jpn 58, 3073 (1985)

    Article  Google Scholar 

  131. Y. Gauduel, H. Gelabert, F. Guilloud, J. Am. Chem. Soc. 122, 5082 (2000)

    Article  Google Scholar 

  132. Y. Gauduel, A. Hallou, B. Charles, J. Phys. Chem. A 107, 2011 (2003)

    Article  Google Scholar 

  133. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, V. Malka, Nature 431, 541 (2004)

    Article  ADS  Google Scholar 

  134. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka, Nature 444, 737 (2006)

    Article  ADS  Google Scholar 

  135. Y. Gauduel, Y. Glinec, V. Malka, J. Phys. 101, 012004.1 (2008)

    Google Scholar 

  136. C.R. Wang, J. Nguyen, Q.B. Lu, J. Am. Chem. Soc. 131, 11320 (2009)

    Article  Google Scholar 

  137. L. Sanche, Nature 461, 358 (2009)

    Article  ADS  Google Scholar 

  138. Advances in quantum chemistry: theory of the interaction of radiation with biomolecules, edited by J.R. Sabin, E. Brandas (Elsevier, Amsterdam, 2007)

  139. I. Plante, F.A. Cucinotta, N.J. Phys. 10, 125020 (2008)

    Article  Google Scholar 

  140. M.-P. Gaigeot, P. Lopez-Tarifa, F. Martin, M. Alcami, R. Vuilleumier, I. Tavernelli, M.-A. Hervé du Penhoat, M.-F. Politis, Mutat. Res.: Rev. Mutat. Res., 704, 45 (2010)

  141. V. Malka, J. Faure, Y. Gauduel, Mutat. Res.: Rev. Mutat. Res., 704, 142 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Gauduel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauduel, Y., Glinec, Y., Rousseau, JP. et al. High energy radiation femtochemistry of water molecules: early electron-radical pairs processes. Eur. Phys. J. D 60, 121–135 (2010). https://doi.org/10.1140/epjd/e2010-00152-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00152-2

Keywords

Navigation