Skip to main content

Advertisement

Log in

Spatio-temporal analysis of DNA damage repair using the X-ray microbeam

  • Topical issue on Molecular level assessments of radiation biodamage
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Cellular response to radiation damage is made by a complex network of pathways and feedback loops whose spatiotemporal organization is still unclear despite its decisive role in determining the fate of the damaged cell. The single-cell approach and the high spatial resolution offered by microbeams provide the perfect tool to study and quantify the dynamic processes associated with the induction and repair of DNA damage. The soft X-ray microbeam has been used to follow the development of radiation induced foci in live cells by monitoring their size and intensity as a function of dose and time using yellow fluorescent protein (YFP) tagging techniques. Preliminary data indicate a delayed and linear rising of the intensity signal indicating a slow kinetic for the accumulation of DNA repair protein 53BP1. A slow and limited foci diffusion has also been observed. Further investigations are required to assess whatever such diffusion is consistent with a random walk pattern or if it is the result of a more structured lesion processing phenomenon. In conclusion, our data indicates that the use of microbeams coupled to live cell microscopy represent a sophisticated approach for visualizing and quantifying the dynamics changes of DNA proteins at the damaged sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Christmann, M.T. Tomicic, W.P. Roos, B. Kaina, Toxicology 193, 3 (2003)

    Article  Google Scholar 

  2. Y. Takashima, M. Sakuraba, T. Koizumi, H. Sakamoto, M. Hayashi, M. Honma, Environ. Mol. Mutagen. (2009)

  3. B. Jakob, M. Scholz, G. Taucher-Scholz, Radiat. Res. 159, 676 (2003)

    Article  Google Scholar 

  4. J.A. Aten, J. Stap, P.M. Krawczyk, C.H. Van Oven, R.A. Hoebe, J. Essers, R. Kanaar, Science 303, 92 (2004)

    Article  ADS  Google Scholar 

  5. A. Asaithamby, N. Uematsu, A. Chatterjee, M.D. Story, S. Burma, D.J. Chen, Radiat. Res. 169, 437 (2008)

    Article  Google Scholar 

  6. C.J. Bakkenist, M.B. Kastan, Nature 421, 499 (2003)

    Article  ADS  Google Scholar 

  7. R.M. Anderson, D.L. Stevens, D.T. Goodhead, Proc. Natl. Acad. Sci. USA 99, 12167 (2002)

    Article  ADS  Google Scholar 

  8. B.E. Nelms, R.S. Maser, J.F. MacKay, M.G. Lagally, J.H.J. Petrini, Science 280, 590 (1998)

    Article  ADS  Google Scholar 

  9. J. Essers, W.A. Van Cappellen, A.F. Theil, E. Van Drunen, N.G. Jaspers, J.H. Hoeijmakers, C. Wyman, W. Vermeulen, R. Kanaar, Mol. Biol. Cell 16, 769 (2005)

    Article  Google Scholar 

  10. R.C. Miller, G. Randers-Pehrson, C.R. Geard, E.J. Hall, D.J. Brenner, Proc. Natl. Acad. Sci. USA 96, 19 (1999)

    Article  ADS  Google Scholar 

  11. K.M. Prise, M. Folkard, A.M. Malcomson, C.H.L. Pullar, G. Schettino, A.G. Bowey, B.D. Michael, Adv. Space Res. 25, 2095 (2000)

    Article  ADS  Google Scholar 

  12. M.A. Kadhim, S.J. Marsden, A.M. Malcomson, D.T. Goodhead, K.M. Prise, B.D. Michael, Radiat. Res. 155, 122 (2001)

    Article  Google Scholar 

  13. G. Schettino, M. Folkard, K.M. Prise, B. Vojnovic, A.G. Bowey, B.D. Michael, Radiat. Res. 156, 526 (2001)

    Article  Google Scholar 

  14. K.M. Prise, O.V. Belyakov, M. Folkard, B.D. Michael, Int. J. Radiat. Biol. 74, 793 (1998)

    Article  Google Scholar 

  15. G. Schettino, M. Folkard, B.D. Michael, K.M. Prise, Radiat. Res. 163, 332 (2005)

    Article  Google Scholar 

  16. A. Asaithamby, D.J. Chen, Nucleic Acids Res. 37, 3912 (2009)

    Article  Google Scholar 

  17. S. Bekker-Jensen, C. Lukas, F. Melander, J. Bartek, J. Lukas, J. Cell. Biol. 170, 201 (2005)

    Article  Google Scholar 

  18. S.V. Costes, A. Boissiere, S. Ravani, R. Romano, B. Parvin, M.H. Barcellos-Hoff, Radiat. Res. 165, 505 (2006)

    Article  Google Scholar 

  19. B. Jakob, J. Splinter, M. Durante, G. Taucher-Scholz, Proc. Natl. Acad. Sci. USA 106, 3172 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Schettino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schettino, G., Ghita, M. & Prise, K. Spatio-temporal analysis of DNA damage repair using the X-ray microbeam. Eur. Phys. J. D 60, 157–161 (2010). https://doi.org/10.1140/epjd/e2010-00076-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00076-9

Keywords

Navigation