The European Physical Journal D

, Volume 57, Issue 2, pp 207–217 | Cite as

Phase transition, formation and fragmentation of fullerenes

  • A. Hussien
  • A. V. Yakubovich
  • A. V. Solov’yov
  • W. Greiner
Clusters and Nanostructures

Abstract

We present a statistical mechanics model treating the formation and the fragmentation of fullerenes as a phase transition. Based on this model, we investigate the formation and fragmentation of C60 and C240 fullerenes from and to a gas of carbon dimers by means of molecular dynamics (MD) simulations. These simulations were conducted for 500 ns using a topologically-constrained forcefield. At the phase transition temperature, both the cage and gaseous phases were found to coexist and the system continuously oscillates between the two phases. Combining the results of the MD simulations and the statistical mechanics approach, we obtain the dependence of the phase transition temperature on pressure and compare the results of our model with arc-discharge experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Concina, S. Tomita, N. Takahashi, T. Kodama, S. Suzuki, K. Kikuchi, Y. Achiba, A. Gromov, J. Andersen, P. Hvelplund, Int. J. Mass Spectrom. 252, 96 (2006) Google Scholar
  2. C. Bordas, B. Baguenard, B. Climen, M. Lebeault, F. Lépine, F. Pagliarulo, Eur. Phys. J. D 34, 151 (2005) Google Scholar
  3. T. Kunert, R. Schmidt, Phys. Rev. Lett. 86, 5258 (2001) Google Scholar
  4. E.E.B. Campbell, T. Raz, R.D. Levine, Chem. Phys. Lett. 253, 261 (1996) Google Scholar
  5. J.Y. Huang, F. Ding, K. Jiao, B.I. Yakobson, Phys. Rev. Lett. 99, 175503 (2007) Google Scholar
  6. B.L. Zhang, C.Z. Wang, C.T. Chan, K.M. Ho, Phys. Rev. B 48, 11381 (1993) Google Scholar
  7. B.L. Zhang, C.Z. Wang, K.M. Ho, C.T. Chan, Z. Phys. D 26, 285 (1993) Google Scholar
  8. C.Z. Wang, C.H. Xu, C.T. Chan, K.M. Ho, J. Phys. Chem. 96, 3563 (1992) Google Scholar
  9. S.G. Kim, D. Tománek, Phys. Rev. Lett. 72, 2418 (1994) Google Scholar
  10. E. Kim, Y.H. Lee, J.Y. Lee, Phys. Rev. B 48, 18230 (1993) Google Scholar
  11. I. László, Fuller. Nanotub. Carbon Nanostructures 5, 375 (1997) Google Scholar
  12. L.A. Openov, A.I. Podliavev, JETP Lett. 84, 68 (2006) Google Scholar
  13. S. Serra, S. Sanguinetti, L. Colombo, Chem. Phys. Lett. 225, 191 (1994) Google Scholar
  14. M. López, P. Marcos, A. Rubio, J. Alonso, Z. Phys. D 40, 385 (1997) Google Scholar
  15. P.A. Marcos, J.A. Alonso, A. Rubio, M.J. López, Eur. Phys. J. D 6, 221 (1999) Google Scholar
  16. W. Zhang, Z. Xu, Z. Zhu, Int. J. Mod. Phys. B 19, 2892 (2005) Google Scholar
  17. C. Xu, C.Z. Wang, C.C.T., K.M. Ho, J. Phys.: Cond. Mat. 4, 6047 (1992) Google Scholar
  18. L. Horváth, T.A. Beu, Phys. Rev. B 77, 075102 (2008) Google Scholar
  19. R. Mowrey, D. Brenner, B. Dunlap, J. Mintmire, C. White, J. Phys. Chem. 95, 7138 (1991) Google Scholar
  20. R.T. Chancey, L. Oddershede, F.E. Harris, J.R. Sabin, Phys. Rev. A 67, 043203 (2003) Google Scholar
  21. Y. Xia, Y. Xing, C. Tan, L. Mei, Phys. Rev. B 52, 110 (1995) Google Scholar
  22. H. Lange, Fuller. Nanotub. Carbon Nanostructures 5, 1177 (1997) Google Scholar
  23. K. Säidane, M. Razafinimanana, H. Lange, A. Huczko, M. Baltas, A. Gleizes, J.L. Meunier, J. Phys. D: Appl. Phys. 37, 232 (2004) Google Scholar
  24. R.E. Smalley, Acc. Chem. Res. 25, 98 (1992) Google Scholar
  25. H. Singh, M. Srivastava, Energy Sources A 17, 615 (1995) Google Scholar
  26. N. Goroff, Acc. Chem. Res. 1996, 77 Google Scholar
  27. Y.E. Lozovik, A.M. Popov, Physics-Uspekhi 7, 751 (1997) Google Scholar
  28. K. Morokuma, Bull. Chem. Soc. Jpn 80, 2247 (2007) Google Scholar
  29. J.R. Chelikowsky, Phys. Rev. B 45, 12062 (1992) Google Scholar
  30. Y. Yamaguchi, S. Maruyama, Chem. Phys. Lett. 286, 336 (1998) Google Scholar
  31. X. Hua, T. Cagin, J. Che, W.A.G. III, Nanotechnology 11, 85 (2000) Google Scholar
  32. S. Irle, G. Zheng, Z. Wang, K. Morokuma, J. Phys. Chem. B 110, 14531 (2006) Google Scholar
  33. Y. Ueno, S. Saito, Phys. Rev. B 77, 085403 (2008) Google Scholar
  34. P.W. Fowler, D.E. Manolopoulos, An Atlas of Fullerenes (Oxford Univ. Press, 1995) Google Scholar
  35. J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988) Google Scholar
  36. R.S. Urdahl, Y. Bao, W.M. Jackson, Chem. Phys. Lett. 178, 425 (1991) Google Scholar
  37. A.D. Pradhan, H. Partridge, J. Bauschlicher, J. Chem. Phys. 101, 3857 (1994) Google Scholar
  38. J.A. Sordo, J. Chem. Phys. 114, 1974 (2001) Google Scholar
  39. N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, 1981) Google Scholar
  40. G. Bussi, M. Parrinello, Phys. Rev. E 75, 056707 (2007) Google Scholar
  41. C. Xu, G.E. Scuseria, Phys. Rev. Lett. 72, 669 (1994) Google Scholar
  42. S. Sugano, H. Koizumi, Microcluster Physics, 2nd edn. (Springer, 1998) Google Scholar
  43. A. Huczko, H. Lange, P. Byszewski, M. Poplawska, A. Starski, J. Phys. Chem. A 101, 1267 (1997) Google Scholar
  44. S. Akita, H. Ashihara, Y. Nakayama, Jpn J. Appl. Phys. 39, 4939 (2000) Google Scholar
  45. H. Lange, K. Saidane, M. Razafinimanana, A. Gleizes, J. Phys. D: Appl. Phys. 32, 1024 (1999) Google Scholar
  46. P. Byszewski, H. Lange, A. Huczko, J.F. Behnke, J. Phys. Chem. Sol. 58, 1679 (1997) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • A. Hussien
    • 1
  • A. V. Yakubovich
    • 1
    • 2
  • A. V. Solov’yov
    • 1
  • W. Greiner
    • 1
  1. 1.Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
  2. 2.Physical Technical InstituteSt. PetersburgRussia

Personalised recommendations