Skip to main content
Log in

Exceptional points in multichannel resonance quantization

  • Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We derive from the quantization condition of a multichannel resonance problem the behaviour of resonance energies close to an exceptional point (EP) where two resonance energies coalesce. The formalism is applied to a one-dimensional model of the molecular ion H2 +. Although the approach does not use a matrix diagonalization procedure, all known results about exceptional points are present, including the transfer from one resonance to another when following a loop encircling the EP. We study how the resonance wave functions behave along loops around the EP, as well as the associated geometric phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Taylor, Scattering theory (Wiley, New York, 1972)

    Google Scholar 

  2. W.D. Heiss, Eur. Phys. J. D 17, 1 (1999)

    Article  ADS  Google Scholar 

  3. C. Dembowski, H.-D. Gräf, H.L. Harney, A. Heine, W.D. Heiss, H. Rehfeld, A. Richter, Phys. Rev. Lett. 86, 787 (2001)

    Article  ADS  Google Scholar 

  4. T. Stehmann, W.D. Heiss, F.G. Scholtz, J. Phys. A: Math. Gen. 37, 7813 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. O. Latinne, N.J. Kylstra, M. Dörr, J. Purvis, M. Terao-Dunseath, C.J. Joachain, P.G. Burke, C.J. Noble, Phys. Rev. Lett. 74, 46 (1995)

    Article  ADS  Google Scholar 

  6. H. Cartarius, J. Main, G. Wunner, Phys. Rev. Lett. 99, 173003 (2007)

    Article  ADS  Google Scholar 

  7. E. Narevicius, N. Moiseyev, Phys. Rev. Lett. 84, 1681 (2000)

    Article  ADS  Google Scholar 

  8. P. Cejnar, S. Heinze, M. Macek, Phys. Rev. Lett. 99, 100601 (2007)

    Article  ADS  Google Scholar 

  9. J. Rubinstein, P. Sternberg, Q. Ma, Phys. Rev. Lett. 99, 167003 (2007)

    Article  ADS  Google Scholar 

  10. T. Kato, Perturbation Theory of Linear Operators (Springer, Berlin, 1966)

    Google Scholar 

  11. W.D. Heiss, H.L. Harney, Eur. Phys. J. D 17, 149 (2001)

    Article  ADS  Google Scholar 

  12. N. Moiseyev, S. Friedland, Phys. Rev. A 22, 618 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  13. P.M. Morse, H. Feschbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), p. 884

    MATH  Google Scholar 

  14. N. Moiseyev, P.R. Certain, F. Weinhold, Molec. Phys. 36, 1613 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  15. E. Hernández, A. Jáuregui, A. Mondragón, J. Phys. A: Math. Gen. 39, 10087 (2006)

    Article  MATH  ADS  Google Scholar 

  16. W.D. Heiss, Czech. J. Phys. 54, 1091 (2004)

    Article  ADS  Google Scholar 

  17. O. Atabek, R. Lefebvre, T.T. Nguyen-Dang, in Handbook of Numerical Analysis, edited by C. Le Bris (Elsevier, New York, 2003), Vol. X

    Google Scholar 

  18. R. Lefebvre, O. Atabek, M. Šindelka, N. Moiseyev, Phys. Rev. Lett. 103, 123003 (2009)

    Article  Google Scholar 

  19. F. Keck, H.J. Korsch, S. Mossmann, J. Phys. A: Math. Gen. 36, 2125 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. A.P. Seyranian, O.N. Kirillov, A.A. Mailybaev, J. Phys. A: Math. Gen. 38, 1723 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. W.D. Heiss, Phys. Rev E 61, 929 (1999)

    Article  ADS  Google Scholar 

  22. E. Hernández, A. Jáuregui, A. Mondragón, Phys. Rev E 72, 026221 (2005)

    Article  ADS  Google Scholar 

  23. H.J. Korsch, S. Mossmann, J. Phys. A: Math. Gen. 36, 2139 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. B.R. Johnson, J. Chem. Phys. 69, 4678 (1978)

    Article  ADS  Google Scholar 

  25. L. Fox, E.T. Goodwin, Phil. Trans. Roy. Soc. London 245, 1 (1953)

    MathSciNet  Google Scholar 

  26. A.F.J. Siegert, Phys. Rev. 56, 750 (1939)

    Article  ADS  Google Scholar 

  27. M. Chrysos, R. Lefebvre, J. Phys. B: At. Mol. Opt. Phys. 26, 2627 (1993)

    Article  ADS  Google Scholar 

  28. N. Moiseyev, Phys. Rep. 302, 212 (1998)

    Article  ADS  Google Scholar 

  29. R. Lefebvre, Phys. Rev. A 46, 6071 (1992)

    Article  ADS  Google Scholar 

  30. O. Atabek, R. Lefebvre, J. Phys. Chem. (in press)

  31. R. Lefebvre, O. Atabek, Int. J. Quant. Chem. 109, 3423 (2009)

    Article  Google Scholar 

  32. G. Herzberg, H.C. Longuet-Higgins, Discuss. Faraday Soc. 35, 77 (1963)

    Article  Google Scholar 

  33. M.V. Berry, Proc. R. Soc. A 392, 45 (1984)

    Article  MATH  ADS  Google Scholar 

  34. J.C. Garrison, E.M. Wright, Phys. Lett. A 128, 177 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  35. A.A. Mailybaev, O.N. Kirillov, A.P. Seyranian, Phys. Rev. A 72, 014104 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Atabek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefebvre, R., Atabek, O. Exceptional points in multichannel resonance quantization. Eur. Phys. J. D 56, 317–324 (2010). https://doi.org/10.1140/epjd/e2009-00315-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00315-2

Keywords

Navigation