Skip to main content
Log in

Dependence of the scattering length for hydrogen atoms on effective mass

  • Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The possibility that the non-adiabatic correction to the scattering length of a pair of hydrogen atoms interacting via the ground state molecular potential, X1Σg +, of H2 could be made by replacing the mass of each nucleus by a different effective mass is explored. The Born-Oppenheimer potential with adiabatic, relativistic and radiative corrections is used in calculations of the scattering lengths and the mass-dependent shifts of the rotationless vibrational levels with fixed and varying effective masses. The shifts are compared with established values and it is demonstrated that the semi-classical formula for the scattering length accounts well for the effect of changing the mass. A perturbing potential that is equivalent to a change in mass is derived and it is compared to a published local non-adiabatic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.F. Mott, H.S.W. Massey, The Theory of Atomic Collisions (Oxford University Press, Oxford, 1965)

    Google Scholar 

  2. A. Sen, S. Chakraborty, A.S. Ghosh, Europhys. Lett. 76, 582 (2006); S. Chakraborty, A. Sen, A.S. Ghosh, Eur. Phys. J. D 45, 261 (2007)

    Article  ADS  Google Scholar 

  3. B.J. Verhaar, J.M.V.A. Koelman, H.T.C. Stoof, O.J. Luiten, Phys. Rev. A 35, 3825 (1987)

    Article  ADS  Google Scholar 

  4. C.J. Williams, P.S. Julienne, Phys. Rev. A 47, 1524 (1995)

    Article  ADS  Google Scholar 

  5. M.J. Jamieson, A. Dalgarno, J. Phys. B 31, L219 (1998)

    Article  ADS  Google Scholar 

  6. M.J. Jamieson, B. Zygelman, Phys. Rev. A 64, 032703 (2001)

    Article  ADS  Google Scholar 

  7. P.R. Bunker, R.E. Moss, Molec. Phys. 33, 417 (1977); P.R. Bunker, C.J. McLarnon, R.E. Moss, Molec. Phys. 33, 425 (1977)

    Article  ADS  Google Scholar 

  8. M. Aubert-Frécon, G. Hadinger, S.Ya. Umanskii, J. Phys. B 27, 4453 (1994)

    Article  ADS  Google Scholar 

  9. C. Schwartz, R.J. Le Roy, J. Mol. Spectrosc. 121, 420 (1987)

    Article  ADS  Google Scholar 

  10. J.H. Van Vleck, J. Chem. Phys. 4, 327 (1936)

    Article  ADS  Google Scholar 

  11. L. Wolniewicz, J. Chem. Phys. 78, 6173 (1983)

    Article  ADS  Google Scholar 

  12. I. Dabrowski, Can. J. Phys. 62, 1639 (1984)

    ADS  Google Scholar 

  13. L. Wolniewicz, J. Chem. Phys. 99, 1851 (1993)

    Article  ADS  Google Scholar 

  14. W. Kołos, J. Rychlewski, J. Chem. Phys. 98, 3960 (1993)

    Article  ADS  Google Scholar 

  15. D.M. Bishop, S.-K. Shih, J. Chem. Phys. 64, 162 (1976)

    Article  ADS  Google Scholar 

  16. National Physical Laboratory, Modern Computing Methods (Her Majesty’s Stationery Office, London, 1961)

    Google Scholar 

  17. F. Calogero, Variable Phase Approach to Potential Scattering (Academic Press, New York, 1967)

    MATH  Google Scholar 

  18. R. Szmytkowski, J. Phys. A 28, 7333 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. H. Ouerdane, M.J. Jamieson, D. Vrinceanu, M.J. Cavagnero, J. Phys. B 36, 4055 (2003)

    Article  ADS  Google Scholar 

  20. D.E. Manolopoulos, M.J. Jamieson, A.D. Pradhan, Comput. Phys. Commun. 105, 169 (1993); R.S. Friedman, M.J. Jamieson, Comput. Phys. Commun. 85, 231 (1994)

    MATH  MathSciNet  Google Scholar 

  21. M. Marinescu, Phys. Rev. A 50, 3177 (1994)

    Article  ADS  Google Scholar 

  22. M.J. Jamieson, A. Dalgarno, L. Wolniewicz, Phys. Rev. A 61, 042705 (2000)

    Article  ADS  Google Scholar 

  23. Z.C. Yan, J.F. Babb, A. Dalgarno, G.W.F. Drake, Phys. Rev. A 54, 2824 (1996)

    Article  ADS  Google Scholar 

  24. C. Herring, M. Flicker, Phys. Rev. A 134, 362 (1964)

    Article  ADS  Google Scholar 

  25. A. Dalgarno, R. McCarroll, Proc. Roy. Soc. A 237, 383 (1956)

    Article  ADS  Google Scholar 

  26. F.J. Smith, Phys. Rev. A 179, 111 (1969)

    Article  ADS  Google Scholar 

  27. R.J. Le Roy, R.B. Bernstein, J. Chem. Phys. 49, 4312 (1968)

    Article  ADS  Google Scholar 

  28. D.R. Bates, R. McCarroll, Proc. Roy. Soc. A 245, 175 (1958); R. McCarroll, Proc. Roy. Soc. A 264, 547 (1961)

    Article  MATH  ADS  Google Scholar 

  29. J.M. Rost, J.S. Briggs, J. Phys. B 24, 4293 (1991)

    Article  ADS  Google Scholar 

  30. J.K.G. Watson, J. Mol. Spectrosc. 223, 39 (2004)

    Article  ADS  Google Scholar 

  31. R. Baer, D.M. Charutz, R. Kosloff, M. Baer, J. Chem. Phys. 105, 9141 (1996); M. Baer, R. Englman, Chem. Phys. Lett. 265, 105 (1997); M. Baer, S.H. Lin, A. Alijah, S. Adhikan, G. Billing, Phys. Rev. A 62, 032506 (2000)

    Article  ADS  Google Scholar 

  32. P. Barragán, L.F. Errea, L. Méndez, A. Macías, I. Rabadán, A. Riera, Phys. Rev. A 70, 022707 (2004)

    Article  ADS  Google Scholar 

  33. G.F. Gribakin, V.V. Flambaum, Phys. Rev. A 48, 546 (1993); V.V. Flambaum, G.F. Gribakin, C. Harabati, Phys. Rev. A 59, 1998 (1999)

    Article  ADS  Google Scholar 

  34. T.C. Killian, D.G. Fried, L. Willmann, D. Landhuis, S.C. Moss, T.J. Greytak, D. Kleppner, Phys. Rev. Lett. 81, 3807 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Jamieson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamieson, M., Cheung, A. & Ouerdane, H. Dependence of the scattering length for hydrogen atoms on effective mass. Eur. Phys. J. D 56, 181–188 (2010). https://doi.org/10.1140/epjd/e2009-00280-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00280-8

Keywords

Navigation