Skip to main content
Log in

MHD waves and instabilities in flowing solar flux-tube plasmas in the framework of Hall magnetohydrodynamics

  • Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

It is well established now that the solar atmosphere, from photosphere to the corona and the solar wind is a highly structured medium. Satellite observations have confirmed the presence of steady flows. Here, we investigate the parallel propagation of magnetohydrodynamic (MHD) surface waves travelling along an ideal incompressible flowing plasma slab surrounded by flowing plasma environment in the framework of the Hall magnetohydrodynamics. The propagation properties of the waves are studied in a reference frame moving with the mass flow outside the slab. In general, flows change the waves’ phase velocities compared to their magnitudes in a static MHD plasma slab and the Hall effect limits the range of waves’ propagation. On the other hand, when the relative Alfvénic Mach number is negative, the flow extends the waves propagation range beyond that limit (owing to the Hall effect) and can cause the triggering of the Kelvin-Helmholtz instability whose onset begins at specific critical wave numbers. It turns out that the interval of Alfvénic Mach numbers for which the surface modes are unstable critically depends on the ratio between mass densities outside and inside the flux tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • V.M. Nakariakov, Adv. Space Res. 39, 1804 (2007); V.M. Nakariakov, E. Verwichte, http://solarphysics.livingreviews.org/Articles/lrsp-2005-3/

  • C. Vocks, U. Motschmann, K.-H. Glassmeir, Ann. Geophysicæ 17, 712 (1999)

    Google Scholar 

  • V.M. Nakariakov, B. Roberts, Solar Phys. 159, 213 (1995)

    Google Scholar 

  • V.M. Nakariakov, B. Roberts, G. Mann, Astron. Astrophys. 311, 311 (1996)

    Google Scholar 

  • J. Andries, M. Goossens, Astron. Astrophys. 368, 1083 (2001)

    Google Scholar 

  • M. Terra-Homem, R. Erdélyi, I. Ballai, Solar Phys. 217, 199 (2003)

    Google Scholar 

  • M.J. Lighthill, Phil. Trans. Roy. Soc. A 252, 397 (1960)

    Google Scholar 

  • J.D. Huba, Phys. Plasmas 2, 2504 (1995)

  • N.F. Cramer, I.J. Donnelly, Plasma Phys. 25, 703 (1983)

    Google Scholar 

  • N.F. Cramer, J. Plasma Phys. 46, 15 (1991)

    Google Scholar 

  • J.A. Almaguer, Phys. Fluids B 4, 3443 (1992)

    Google Scholar 

  • I. Zhelyazkov, A. Debosscher, M. Goossens, Phys. Plasmas 3, 4346 (1996)

    Google Scholar 

  • I. Zhelyazkov, G. Mann, Contr. Plasma Phys. 40, 569 (2000)

    Google Scholar 

  • I. Zhelyazkov, G. Mann, Phys. Plasmas 10, 484 (2003)

    Google Scholar 

  • R. Miteva, I. Zhelyazkov, R. Erdélyi, Phys. Plasmas 10, 4463 (2003)

    Google Scholar 

  • R. Miteva, I. Zhelyazkov, R. Erdélyi, New J. Phys. 6, 14 (2004)

    Google Scholar 

  • H. Sikka, N. Kumar, I. Zhelyazkov, Phys. Plasmas 11, 4904 (2004)

    Google Scholar 

  • M.S. Ruderman, J. Plasma Phys. 67, 271 (2002)

    Google Scholar 

  • M.S. Ruderman, Plasma Phys. 9, 2940 (2002)

    Google Scholar 

  • I. Ballai, J.C. Thelen, B. Roberts, Astron. Astrophys. 404, 701 (2003)

    Google Scholar 

  • S.M. Mahajan, V. Krishan, Mon. Not. R. Astron. Soc. 359, L27 (2005)

  • I. Ballai, E. Forgács-Dajka, A. Marcu, Astron. Nachr. 328, 734 (2007)

    Google Scholar 

  • C.T.M. Clack, I. Ballai, Phys. Plasmas 15, 082310 (2008)

  • R. Miteva, G. Mann, J. Plasma Phys. 74, 607 (2008)

    Google Scholar 

  • Y. Nariyuki, T. Hada, Earth Planets Space 59, e13 (2007)

  • M.S. Ruderman, Ph. Caillol, J. Plasma Phys. 74, 119 (2008)

  • B.P. Pandey, M. Wardle, Mon. Not. R. Astron. Soc. 385, 2269 (2008)

  • V. Krishan, B.A. Varghese, Solar Phys. 247, 343 (2008)

    Google Scholar 

  • V. Krishan, S.M. Mahajan, Solar Phys. 220, 29 (2004)

    Google Scholar 

  • S. Galtier, J. Plasma. Phys. 72, 721 (2006)

    Google Scholar 

  • S. Galtier, E. Buchlin, Astrophys. J. 656, 560 (2007)

    Google Scholar 

  • S. Galtier, Nonlinear Processes in Geophysics 16, 83 (2009)

    Google Scholar 

  • D. Shaikh, P.K. Shukla, Phys. Rev. Lett. 102, 045004 (2009)

    Google Scholar 

  • A. Bhattacharjee, Z.W. Ma, X. Wang, Phys. Plasmas 8, 1829 (2001)

    Google Scholar 

  • L.F. Morales, S. Dasso, D.O. Gómez, P. Mininni, J. Atmos. Sol.-Terr. Phys. 67, 1821 (2005)

    Google Scholar 

  • T.D. Arber, M. Haynes, Phys. Plasmas 13, 112105 (2006)

    Google Scholar 

  • P.A. Cassak, J.F. Drake, M.A. Shay, B. Eckhardt, Phys. Rev. Lett. 98, 215001 (2007)

    Google Scholar 

  • J.D. Craig, Y.E. Litvinenko, Astron. Astrophys. 484, 847 (2008)

    Google Scholar 

  • M. Wardle, C. Ng, Mon. Not. R. Astron. Soc. 303, 239 (1999)

  • T. Sano, J.M. Stone, Astrophys. J. 577, 534 (2002)

    Google Scholar 

  • M. Wardle, Astrophys. Space Sci. 292, 317 (2004)

    Google Scholar 

  • E.M. Rossi, P.J. Armitage, K. Menou, Mon. Not. R. Astron. Soc. 391, 922 (2008)

    Google Scholar 

  • T.E. Cravens, Physics of Solar System Plasmas (Cambridge University Press, Cambridge, 1997), Chap. 4

  • S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford, 1961)

  • D.G. Swanson, Plasma Waves (Academic Press, San Diego CA, 1989), p. 53

  • F.S. Acton, Numerical Methods That (Usually) Work (Mathematical Association of America, Washington DC, 1990), Chap. 14

  • P.M. Edwin, B. Roberts, Solar Phys. 76, 239 (1982)

    Google Scholar 

  • A.G. Kurosh, Lectures in General Algebra (Pergamon Press, Oxford, 1965)

  • D.A. Muller, Mathematical Tables and Other Aids to Computation 10, 208 (1956)

  • I. Zhelyazkov, in PLASMA 2007, Proceedings of the International Conference on Research and Applications of Plasmas, Greifswald, Germany, edited by H.-J. Hartfuss, M. Dudeck, J. Musielok, M.J. Sadowski, AIP Conference Proceedings 993 (American Institute of Physics, Melville, New York, 2008), p. 281

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Zhelyazkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhelyazkov, I. MHD waves and instabilities in flowing solar flux-tube plasmas in the framework of Hall magnetohydrodynamics. Eur. Phys. J. D 55, 127–137 (2009). https://doi.org/10.1140/epjd/e2009-00217-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00217-3

PACS

Navigation