The European Physical Journal D

, Volume 54, Issue 3, pp 519–544 | Cite as

Physisorption kinetics of electrons at plasma boundaries

Colloquia

Abstract

Plasma-boundaries floating in an ionized gas are usually negatively charged. They accumulate electrons more efficiently than ions leading to the formation of a quasi-stationary electron film at the boundaries. We propose to interpret the build-up of surface charges at inert plasma boundaries, where other surface modifications, for instance, implantation of particles and reconstruction or destruction of the surface due to impact of high energy particles can be neglected, as a physisorption process in front of the wall. The electron sticking coefficient se and the electron desorption time τe, which play an important role in determining the quasi-stationary surface charge, and about which little is empirically and theoretically known, can then be calculated from microscopic models for the electron-wall interaction. Irrespective of the sophistication of the models, the static part of the electron-wall interaction determines the binding energy of the electron, whereas inelastic processes at the wall determine se and τe. As an illustration, we calculate se and τe for a metal, using the simplest model in which the static part of the electron-metal interaction is approximated by the classical image potential. Assuming electrons from the plasma to loose (gain) energy at the surface by creating (annihilating) electron-hole pairs in the metal, which is treated as a jellium half-space with an infinitely high workfunction, we obtain se≈10-4 and τe≈10-2 s. The product seτe≈10-6 s has the order of magnitude expected from our earlier results for the charge of dust particles in a plasma but individually se is unexpectedly small and τe is somewhat large. The former is a consequence of the small matrix elements occurring in the simple model while the latter is due to the large binding energy of the electron. More sophisticated theoretical investigations, but also experimental support, are clearly needed because if se is indeed as small as our exploratory calculation suggests, it would have severe consequences for the understanding of the formation of surface charges at plasma boundaries. To identify what we believe are key issues of the electronic microphysics at inert plasma boundaries and to inspire other groups to join us on our journey is the purpose of this colloquial presentation.

PACS

52.27.Lw Dusty or complex plasmas; plasma crystals 52.40.Hf Plasma-material interactions; boundary layer effects 68.43.-h Chemisorption/physisorption: adsorbates on surfaces 73.20.-r Electron states at surfaces and interfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.N. Franklin, J. Phys. D: Appl. Phys. 36, R309 (2006) Google Scholar
  2. K.-U. Riemann, J. Phys. D: Appl. Phys. 24, 493 (1991) Google Scholar
  3. H.G. Purwins, AIP Conf. Proc. 993, 67 (2008) Google Scholar
  4. H.G. Purwins, H.U. Bodeker, A.W. Liehr, Experimental Chaos 742, 289 (2004) Google Scholar
  5. M.A. Lieberman, A.J. Lichtenberg, Principles of plasma discharges and materials processing (Wiley-Interscience, New York, 2005) Google Scholar
  6. M.W. Cole, Rev. Mod. Phys. 46, 451 (1974) Google Scholar
  7. T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982) Google Scholar
  8. M. Rapp, F.-J. Luebken, J. Atm. Solar-Terr. Phys. 63, 759 (2001) Google Scholar
  9. H.B. Garrett, A.C. Whittlesey, IEEE Trans. Plasma Sci. 28, 2017 (2000) Google Scholar
  10. E.C. Whipple, Rep. Prog. Phys. 44, 1197 (1981) Google Scholar
  11. I. Mann, Adv. Space Res. 41, 160 (2008) Google Scholar
  12. M. Horányi, Annu. Rev. Astron. Astrophys. 34, 383 (1996) Google Scholar
  13. O. Ishihara, J. Phys. D: Appl. Phys. 40, R121 (2007) Google Scholar
  14. V.E. Fortov, A.V. Ivlev, S.A. Khrapak, A.G. Khrapak, G.E. Morfill, Phys. Rep. 421, 1 (2005) Google Scholar
  15. S.A. Khrapak, S.V. Ratynskaia, A.V. Zobnin, A.D. Usachev, V.V. Yaroshenko, M.H. Thoma, M. Kretschmer, H. Höfner, G.E. Morfill, O.F. Petrov, V.E. Fortov, Phys. Rev. E 72, 016406 (2005) Google Scholar
  16. A.A. Samarian, S.V. Vladimirov, Phys. Rev. E 67, 066404 (2003) Google Scholar
  17. E.B. Tomme, B.M. Annaratone, J.E. Allen, Plasma Sources Sci. Technol. 9, 87 (2000) Google Scholar
  18. E.B. Tomme, D.A. Law, B.M. Annaratone, J.E. Allen, Phys. Rev. Lett. 85, 2518 (2000) Google Scholar
  19. B. Walch, M. Horányi, S. Robertson, Phys. Rev. Lett. 75, 838 (1995) Google Scholar
  20. Y.B. Golubovskii, V.A. Maiorov, J. Behnke, J.F. Behnke, J. Phys. D: Appl. Phys. 35, 751 (2002) Google Scholar
  21. U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003) Google Scholar
  22. M. Li, C. Li, H. Zhan, J. Xu, Proceedings of the XV International Conference on Gas Discharges and their Applications (2004) Google Scholar
  23. L. Stollenwerk, S. Amiranashvili, J.-P. Boeuf, H.-G. Purwins, Phys. Rev. Lett. 96, 255001 (2006) Google Scholar
  24. L. Stollenwerk, J.G. Laven, H.-G. Purwins, Phys. Rev. Lett. 98, 255001 (2007) Google Scholar
  25. M. Li, C. Li, H. Zhan, J. Xu, Appl. Phys. Lett. 92, 031503 (2008) Google Scholar
  26. K.G. Emeleus, J.R.M. Coulter, Int. J. Electron. 62, 225 (1987) Google Scholar
  27. J.F. Behnke, T. Bindemann, H. Deutsch, K. Becker, Contrib. Plasma Phys. 37, 345 (1997) Google Scholar
  28. H. Kersten, H. Deutsch, G.M.W. Kroesen, Int. J. Mass Spectrom. 233, 51 (2004) Google Scholar
  29. F.X. Bronold, H. Fehske, H. Kersten, H. Deutsch, Phys. Rev. Lett. 101, 175002 (2008) Google Scholar
  30. J.E. Lennard-Jones, A.F. Devonshire, Proc. Roy. Soc. (London) A 156, 6 (1936) Google Scholar
  31. B. Bendow, S.-C. Ying, Phys. Rev. B 7, 622 (1973) Google Scholar
  32. Z.W. Gortel, H.J. Kreuzer, R. Teshima, Phys. Rev. B 22, 5655 (1980) Google Scholar
  33. Z.W. Gortel, H.J. Kreuzer, R. Teshima, Phys. Rev. B 22, 512 (1980) Google Scholar
  34. H.J. Kreuzer, R. Teshima, Phys. Rev. B 24, 4470 (1981) Google Scholar
  35. W. Brenig, Z. Phys. B 48, 127 (1982) Google Scholar
  36. H.J. Kreuzer, Z.W. Gortel, Physisorption Kinetics (Springer Verlag, Berlin, 1986) Google Scholar
  37. D. Neilson, R.M. Nieminen, J. Szymański, Phys. Rev. B 33, 1567 (1986) Google Scholar
  38. Z.W. Gortel, J. Szymanski, Phys. Rev. B 43, 1919 (1991) Google Scholar
  39. W. Brenig, R. Russ, Surf. Sci. 278, 397 (1992) Google Scholar
  40. A.B. Walker, K.O. Jensen, J. Szymański, D. Neilson, Phys. Rev. B 46, 1687 (1992) Google Scholar
  41. R. Ray, G.D. Mahan, Phys. Lett. 42, A 301 (1972) Google Scholar
  42. E. Evans, D.L. Mills, Phys. Rev. B 8, 4004 (1973) Google Scholar
  43. G. Barton, J. Phys. C: Solid State Phys. 14, 3975 (1981) Google Scholar
  44. V. Dose, W. Altmann, A. Goldmann, U. Kolac, J. Rogozik, Phys. Rev. Lett. 52, 1919 (1984) Google Scholar
  45. D. Straub, F.J. Himpsel, Phys. Rev. Lett. 52, 1922 (1984) Google Scholar
  46. D.P. Woodruff, S.L. Hulbert, P.D. Johnson, N.V. Smith, Phys. Rev. B 31, (RC)4046 (1985) Google Scholar
  47. W. Jacob, V. Dose, U. Kolac, T. Fauster, Z. Phys. B 63, 459 (1986) Google Scholar
  48. P.M. Echenique, J.B. Pendry, Progr. Surf. Sci. 32, 111 (1990) Google Scholar
  49. A. Elmahboubi, Y. Lépine, Surf. Sci. 303, 409 (1994) Google Scholar
  50. T. Fauster, Appl. Phys. A 59, (1994) 479. Google Scholar
  51. A. Elmahboubi, Y. Lépine, Solid State Commun. 94, 655 (1995) Google Scholar
  52. U. Höfer, I.L. Shumay, C. Reuss, U. Thomann, W. Wallauer, T. Fauster, Science 277, 1480 (1997) Google Scholar
  53. E.V. Chulkov, V.M. Silkin, P.M. Echenique, Surf. Sci. 437, 330 (1999) Google Scholar
  54. U. Höfer, Appl. Phys. B 68, 383 (1999) Google Scholar
  55. M.G. Vergniory, J.M. Pitarke, P.M. Echenique, Phys. Rev. B 76, 245416 (2007) Google Scholar
  56. M. Lampe, V. Gavrishchaka, G. Ganguli, G. Joyce, Phys. Rev. Lett. 86, 5278 (2001) Google Scholar
  57. M. Lampe, R. Goswami, Z. Sternovsky, S. Robertson, V. Gavrishchaka, G. Ganguli, G. Joyce, Phys. Plasmas 10, 1500 (2003) Google Scholar
  58. Z. Sternovsky, M. Lampe, S. Robertson, IEEE Trans. Plasma Sci. 32, 632 (2004) Google Scholar
  59. I.B. Bernstein, I.N. Rabinowitz, Phys. Fluids 2, 112 (1959) Google Scholar
  60. J.G. Laframboise, L.W. Parker, Phys. Fluids 16, 629 (1973) Google Scholar
  61. J.E. Daugherty, R.K. Porteous, M.D. Kilgore, D.B. Graves, J. Appl. Phys. 72, 3934 (1992) Google Scholar
  62. D.D. Tskhakaya, N.L. Tsintsadze, P.K. Shukla, L. Stenflo, Phys. Scr. 64, 366 (2001) Google Scholar
  63. D.D. Tskhakaya, P.K. Shukla, L. Stenflo, Phys. Plasmas 8, 5333 (2001) Google Scholar
  64. C.J.F. Boettcher, Theory of electric polarization (Elsevier Publishing Company, Amsterdam, 1952) Google Scholar
  65. B.T. Draine, B. Sutin, Astrophys. J. 320, 803 (1987) Google Scholar
  66. Y.M. Vilk, A.E. Ruckenstein, Phys. Rev. B 48, 11196 (1993) Google Scholar
  67. M.-C. Desjonqueres, D. Spanjaard, Concepts of surface physics (Springer Verlag, Berlin, 1996) Google Scholar
  68. M.J. Richardson, Phys. Rev. A 8, 781 (1973) Google Scholar
  69. V.C. Liu, Space Sci. Rev. 9, 423 (1969) Google Scholar
  70. G.H.P.M. Swinkels, H. Kersten, H. Deutsch, G.M.W. Kroesen, J. Appl. Phys. 88, 1747 (2000) Google Scholar
  71. S.J. Choi, M.J. Kushner, IEEE Trans. Plasma Sci. 22, 138 (1994) Google Scholar
  72. H. Maurer, R. Basner, H. Kersten, Rev. Sci. Instrum. 79, 093508 (2008) Google Scholar
  73. M. Heinrichsmeier, A. Fleszar, W. Hanke, A.G. Eguiluz, Phys. Rev. B 57, 14974 (1998) Google Scholar
  74. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976) Google Scholar
  75. I. Kuscer, Surf. Sci. 25, 225 (1971) Google Scholar
  76. T. Umebayashi, T. Nakano, Publ. Astron. Soc. Jpn 32, 405 (1980) Google Scholar
  77. D. Hollenbach, E.E. Salpeter, J. Chem. Phys. 53, 79 (1970) Google Scholar
  78. J. Maultsch, S. Reich, C. Thomsen, H. Requardt, P. Ordejón, Phys. Rev. Lett. 92, 075501 (2004) Google Scholar
  79. M. Abramowitz, I.A. Stegun, Handbook of mathematical functions, edited by M. Abramowitz, I.A. Stegun (Dover Publications, Inc., New York, 1973) Google Scholar
  80. I.S. Gradstein, I.M. Ryshik, Tables of series, products, and integrals (Verlag Harri Deutsch, Thun and Frankfurt/Main, 1981), Vol. 2 Google Scholar
  81. K. Unger, Phys. Stat. Sol. B 149, K141 (1988) Google Scholar
  82. F.W.J. Olver, Aysmptotics and special functions (Academic Press, New York, 1974) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institut für Physik, Ernst-Moritz-Arndt-Universität GreifswaldGreifswaldGermany

Personalised recommendations