Skip to main content
Log in

Particle acceleration in cosmic sites

Astrophysics issues in our understanding of cosmic rays

  • Topical issue: Fundamental Physics and Ultra-High Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Particles are accelerated in cosmic sites probably under conditions very different from those at terrestrial particle accelerator laboratories. Nevertheless, specific experiments which explore plasma conditions and stimulate particle acceleration carry significant potential to illuminate some aspects of the cosmic particle acceleration process. Here we summarize our understanding of cosmic particle acceleration, as derived from observations of the properties of cosmic ray particles, and through astronomical signatures caused by these near their sources or throughout their journey in interstellar space. We discuss the candidate-source object variety, and what has been learned about their particle-acceleration characteristics. We conclude identifying open issues as they are discussed among astrophysicists. – The cosmic ray differential intensity spectrum across energies from 1010 eV to 1021 eV reveals a rather smooth power-law spectrum. Two kinks occur at the “knee” (≃1015 eV) and at the “ankle” (≃ 3×1018 eV). It is unclear if these kinks are related to boundaries between different dominating sources, or rather related to characteristics of cosmic-ray propagation. Currently we believe that galactic sources dominate up to 1017 eV or even above, and the extragalactic origin of cosmic rays at highest energies merges rather smoothly with galactic contributions throughout the 1015–1018 eV range. Pulsars and supernova remnants are among the prime candidates for galactic cosmic-ray production, while nuclei of active galaxies are considered best candidates to produce ultrahigh-energy cosmic rays of extragalactic origin. The acceleration processes are probably related to shocks formed when matter is ejected into surrounding space from energetic sources such as supernova explosions or matter accreting onto black holes. Details of shock acceleration are complex, as relativistic particles modify the structure of the shock, and simple approximations or perturbation calculations are unsatisfactory. This is where laboratory plasma experiments are expected to contribute, to enlighten the non-linear processes which occur under such conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.K. Gaisser, J. Phys. Conf. Ser. 47, 15 (2006)

    Article  ADS  Google Scholar 

  2. J. Linsley, Phys. Rev. Lett. 10, 146 (1963)

    Article  ADS  Google Scholar 

  3. V. Hess, Z. Phys. 13, 1084 (1912)

    Google Scholar 

  4. I.A. Grenier, A.K. Harding, in Albert Einstein Century International Conference, American Institute of Physics Conference Series (2006), Vol. 861, pp. 630–637

    ADS  Google Scholar 

  5. R.A. Millikan, Annalen der Physik 384, 572 (1926)

    Article  ADS  Google Scholar 

  6. P. Auger, T. Grivet, Rev. Mod. Phys. 11, 232 (1939)

    Article  ADS  Google Scholar 

  7. P. Auger et al., Rev. Mod. Phys. 11, 288 (1939)

    Article  ADS  Google Scholar 

  8. D.E. Brownlee et al., Meteoritics and Planetary Science 32, 22 (1997)

    Google Scholar 

  9. R. Battiston, J. Phys. Conf. Ser. 116, 012001 (2008)

    Article  ADS  Google Scholar 

  10. E.C. Stone et al., Space Sci. Rev. 86, 285 (1998)

    Article  ADS  Google Scholar 

  11. P. Picozza et al., Astrop. Phys. 27, 296 (2007)

    Article  ADS  Google Scholar 

  12. M.H. Israel et al., Nucl. Phys. A 758, 201 (2005)

    Article  ADS  Google Scholar 

  13. S.W. Barwick et al., Astrophys. J. 498, 779 (1998)

    Article  ADS  Google Scholar 

  14. A.D. Panov et al., Adv. Space Res. 37, 1944 (2006)

    Article  ADS  Google Scholar 

  15. J. Chang et al., Nature 456, 362 (2008)

    Article  ADS  Google Scholar 

  16. A. Haungs, H. Rebel, M. Roth, Rep. Prog. Phys. 66, 1145 (2003)

    Article  ADS  Google Scholar 

  17. T. Antoni et al., Astrop. Phys. 24, 1 (2005)

    Article  ADS  Google Scholar 

  18. J.W. Cronin, T.K. Gaisser, S.P. Swordy, Scientific American 276, 32 (1997)

    Article  ADS  Google Scholar 

  19. A.W. Strong, I.V. Moskalenko, O. Reimer, Astrophys. J. 537, 763 (2000)

    Article  ADS  Google Scholar 

  20. A.W. Strong, I.V. Moskalenko, O. Reimer, Astrophys. J. 613, 962 (2004)

    Article  ADS  Google Scholar 

  21. S. Gabici, F.A. Aharonian, Astrophys. Space Sci. 309, 465 (2007)

    Article  ADS  Google Scholar 

  22. E.G. Berezhko, H.J. Völk, Astron. Astrophys. 419, L27 (2004)

    Article  ADS  Google Scholar 

  23. T. Padmanabhan, J. Astrophys. Astron. 18, 87 (1997)

    Article  ADS  Google Scholar 

  24. T. Padmanabhan, Theoretical Astrophysics Astrophysical Processes, Theoretical Astrophysics, Astrophysical Processes, edited by T. Padmanabhan (Cambridge University Press, December 2000).

  25. K. Greisen, Phys. Rev. Lett. 16, 748 (1966)

    Article  ADS  Google Scholar 

  26. G.T. Zatsepin, V.A. Kuz’min, ZhETF Pis’ma Redaktsiiu 4, 114 (1966)

    ADS  Google Scholar 

  27. R. Abbasi et al., Phys. Lett. B 619, 271 (2005)

    Article  ADS  Google Scholar 

  28. The Pierre Auger Collaboration, Science 318, 938 (2007)

    Article  ADS  Google Scholar 

  29. A.M. Hillas, e-print ArXiv:astro-ph/0607109 (2006)

  30. J. Alcaraz, B. Alpat, G. Ambrosi, et al., Nucl. Instrum. Methods Phys. Res. A 478, 119 (2002)

    Article  ADS  Google Scholar 

  31. O. Adriani et al., e-print ArXiv:0811.4019 (2008)

  32. M.E. Wiedenbeck et al., in Joint SOHO/ACE workshop Solar and Galactic Composition, American Institute of Physics Conference Series, edited by R.F. Wimmer-Schweingruber (2001), Vol. 598, p. 269

  33. M.E. Wiedenbeck et al., Space Sci. Rev. 130, 415 (2007)

    Article  ADS  Google Scholar 

  34. F.W. Stecker, Astrophys. J. 6, 377 (1970)

    Google Scholar 

  35. E.C. Stone, M.E. Wiedenbeck, Astrophys. J. 231, 606 (1979)

    Article  ADS  Google Scholar 

  36. N.E. Yanasak et al., Astrophys. J. 563, 768 (2001)

    Article  ADS  Google Scholar 

  37. A.W. Strong et al., Astron. Astrophys. 422, L47 (2004)

    Article  ADS  Google Scholar 

  38. A.W. Strong, I.V. Moskalenko, V.S. Ptuskin, Ann. Rev. Nucl. Part. Sci. 57, 285 (2007)

    Article  ADS  Google Scholar 

  39. J.G. Luhmann, J.A. Earl, J. Geophys. Res. 78, 1502 (1973)

    Article  ADS  Google Scholar 

  40. G. Kanbach, C. Reppin, V. Schoenfelder, J. Geophys. Res. 79, 5159 (1974)

    Article  ADS  Google Scholar 

  41. J.W. Cronin, Rev. Mod. Phys. Suppl. 71, 165 (1999)

    Article  Google Scholar 

  42. A. Spitkovsky, Astrophys. J. 682, L5 (2008)

    Article  ADS  Google Scholar 

  43. M.A. de Avillez, D. Breitschwerdt, Astron. Astrophys. 436, 585 (2005)

    Article  ADS  Google Scholar 

  44. M.S. Longair, High energy astrophysics. Stars, the galaxy and the interstellar medium, 2nd edn. (Cambridge University Press, 1994), Vol. 2

  45. E.G. Berezhko, D.C. Ellison, Astrophys. J. 526, 385 (1999)

    Article  ADS  Google Scholar 

  46. D.C. Ellison, Space Sci. Rev. 99, 305 (2001)

    Article  ADS  Google Scholar 

  47. D.C. Ellison, G. Cassam-Chenaï, Astrophys. J. 632, 920 (2005)

    Article  ADS  Google Scholar 

  48. S.-H. Lee, T. Kamae, D.C. Ellison, Astrophys. J. 686, 325 (2008)

    Article  ADS  Google Scholar 

  49. D.C. Ellison, E.G. Berezhko, M.G. Baring, Astrophys. J. 540, 292 (2000)

    Article  ADS  Google Scholar 

  50. F. Aharonian et al., Astron. Astrophys. 425, L13 (2004)

    Article  ADS  Google Scholar 

  51. F. Aharonian et al., Nature 439, 695 (2006)

    Article  ADS  Google Scholar 

  52. M.G. Baring et al., Astrophys. J. 513, 311 (1999)

    Article  ADS  Google Scholar 

  53. T. Tanimori et al., Astrophys. J. 497, L25+ (1998)

    Article  ADS  Google Scholar 

  54. F. Aharonian, A. Neronov, Astrophys. Space Sci. 300, 255 (2005)

    Article  ADS  Google Scholar 

  55. J. Albert et al., Astrophys. J. 665, L51 (2007)

    Article  ADS  Google Scholar 

  56. Y. Uchiyama, F.A. Aharonian, T. Takahashi, Astron. Astrophys. 400, 567 (2003)

    Article  ADS  Google Scholar 

  57. J.M. Paredes, e-print ArXiv (2008)

  58. J. Dyks, A.K. Harding, B. Rudak, Astrophys. J. 606, 1125 (2004)

    Article  ADS  Google Scholar 

  59. A.K. Harding, in The First GLAST Symposium, American Institute of Physics Conference Series, edited by S. Ritz, P. Michelson, C.A. Meegan (2007), Vol. 921, pp. 49–53

  60. T.K. Gaisser, T. Stanev, Nucl. Phys. A 777, 98 (2006)

    Article  ADS  Google Scholar 

  61. I.F. Mirabel, L.F. Rodriguez, Nature 371, 46 (1994)

    Article  ADS  Google Scholar 

  62. V. Bosch-Ramon, F.A. Aharonian, J.M. Paredes, Astron. Astrophys. 432, 609 (2005)

    Article  ADS  Google Scholar 

  63. A. Neronov, F.A. Aharonian, Astrophys. J. 671, 85 (2007)

    Article  ADS  Google Scholar 

  64. S.E. Woosley, J.S. Bloom, Ann. Rev. Astron. Astrophys. 44, 507 (2006)

    Article  ADS  Google Scholar 

  65. P. Meszaros, M.J. Rees, Astrophys. J. 405, 278 (1993)

    Article  ADS  Google Scholar 

  66. A. Henig et al., Phys. Rev. Lett., in press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Diehl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diehl, R. Particle acceleration in cosmic sites. Eur. Phys. J. D 55, 509–518 (2009). https://doi.org/10.1140/epjd/e2009-00183-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00183-8

PACS

Navigation