Skip to main content
Log in

A DFT study on small M-doped titanium (M = V, Fe, Ni) clusters: structures, chemical bonds and magnetic properties

  • Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The equilibrium structures, electronic properties of bimetallic Ti1-4M (M=V, Fe, Ni) clusters are investigated by using the density functional method within generalized gradient approximation in conjunction with the valence basis set. Considering the spin multiplicity effect, the geometries with different spins are optimized to find the ground states. For the ground states, the natural bonding orbital analysis (NBO) is performed and shows that the 4s electrons always transfer to the 3d orbital in the bonding atoms so that 4s and 3d orbitals hybridize with each other. The electron transfers from Ti atoms to the ‘impurity’ atoms (V, Fe, and Ni) are also found. The two kinds of electron transfer mechanisms are considered to be the contributor for the stabilities of the studied clusters. The Wiberg bond order and AIM (atoms in molecules) analyses indicate that the relative stabilities of chemical bonds are: \(\text{Ti-V/Ti-Fe} > \text{Ti-Ti} > \text{Ti-Ni}\). The spin magnetic moments are found to be mostly located at Ti atoms. Several clusters like Ti2V, Ti3V, Ti3Ni and Ti4Ni present the high moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Doverstål, L. Karlsson, B. Lindgren, U. Sassenberg, Chem. Phys. Lett. 270, 273 (1997)

    Google Scholar 

  • C. Cossé et al., J. Chem. Phys. 73, 6076 (1980)

  • A. Kant, S.S. Lin, J. Chem. Phys. 51, 1644 (1969)

    Google Scholar 

  • M. Sakurai, K.J. Watanabe, K.J. Sumiyama, K.J. Suzuki, J. Chem. Phys. 111, 235 (1999)

    Google Scholar 

  • S.H. Wei, Z. Zeng, J.Q. You, X.H. Yan, X.G. Gong, J. Chem. Phys. 113, 11127 (2000)

    Google Scholar 

  • M. Castro, S.R. Liu, H.J. Zhai, L.S. Wang, J. Chem. Phys. 118, 2116 (2003)

  • J.J. Zhao, Q. Qiu, B.L. Wang, J.L. Wang, G.H. Wang, Solid State Commun. 118, 157 (2001)

  • R.J. van Zee, W. Weltner, Chem. Phys. Lett. 107, 173 (1984)

    Google Scholar 

  • J. Xiang, S.H. Wei, X.H. Yan, J.Q. You, Y.L. Mao, J. Chem. Phys. 120, 4251 (2004)

    Google Scholar 

  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B 02, Gaussian (Inc., Pittsburgh PA, 2003)

  • A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Google Scholar 

  • J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Google Scholar 

  • J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)

    Google Scholar 

  • W.J. Stevens, H. Basch, M. Krauss, J. Chem. Phys. 81, 6026 (1984)

    Google Scholar 

  • W.J. Stevens, M. Krauss, H. Basch, P.G. Jasien, Can. J. Chem. 70, 612 (1992)

    Google Scholar 

  • T.R. Cundari, W.J. Stevens, J. Chem. Phys. 98, 5555 (1993)

    Google Scholar 

  • J.G. Du, H.Y. Wang, G. Jiang, J. Mol. Struc. Theochem 817, 47 (2007)

  • J.R. Lombardi, B. Davis, Chem. Rev. 102, 2431 (2002)

    Google Scholar 

  • M.D. Morse, Chem. Rev. 86, 1049 (1986)

    Google Scholar 

  • J.E. Carpenter, F. Weinhold, J. Mol. Struct. Theochem 169, 41 (1988)

  • J.E. Carpenter, Ph.D. thesis (University of Wisconsin, Madison, WI, 1987)

  • J.P. Foster, F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980)

    Google Scholar 

  • A.E. Reed, F. Weinhold, J. Chem. Phys. 78, 4066(1983)

  • A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735 (1985)

  • A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)

    Google Scholar 

  • K.B. Wiberg, Tetrahedron 24, 1083 (1968)

  • G.A. Petersson, M.A. Al-Laham, J. Chem. Phys. 94, 6081 (1991)

    Google Scholar 

  • AIMAll (version 08.05.04), T.A. Keith, 2008 (aim.tkgristmill.com).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, J., Sun, X. & Jiang, G. A DFT study on small M-doped titanium (M = V, Fe, Ni) clusters: structures, chemical bonds and magnetic properties. Eur. Phys. J. D 55, 111–120 (2009). https://doi.org/10.1140/epjd/e2009-00177-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00177-6

PACS

Navigation