Skip to main content

Advertisement

Log in

Vision of nuclear physics with photo-nuclear reactions by laser-driven \(\sf \gamma\) beams

  • Topical issue: Fundamental Physics and Ultra-High Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A laser-accelerated dense electron sheet with an energy \(E=\tilde{\gamma} mc^2\) can be used as a relativistic mirror to coherently reflect a second laser with photon energy ħω, thus generating by the Doppler boost [A. Einstein, Annalen der Physik 17, 891 (1905); D. Habs et al., Appl. Phys. B 93, 349 (2008)] brilliant high-energy photon beams with \(\hbar\omega^{\prime}=4\tilde{\gamma}^2\hbar\omega\) and short duration for many new nuclear physics experiments. While the shortest-lived atomic levels are in the atto-second range, nuclear levels can have lifetimes down to zeptoseconds. We discuss how the modulation of electron energies in phase-locked laser fields used for as-measurements [E. Goulielmakis et al., Science 317, 769 (2007)] can be carried over to the new direct measurement of fs–zs nuclear lifetimes by modulating the energies of accompanying conversion electrons or emitted protons. In the field of nuclear spectroscopy we discuss the new perspective as a function of increasing photon energy. In nuclear systems a much higher sensitivity is predicted to the time variation of fundamental constants compared to atomic systems [V. Flambaum, arXiv:nucl-th/0801.1994v1 (2008)]. For energies up to 50 keV Mössbauer-like recoilless absorption allows to produce nuclear bosonic ensembles with many delocalized coherent polaritons [G.V. Smirnov et al., Phys. Rev. A 71, 023804 (2005)] for the first time. Using the (γ,n) reaction to produce cold, polarized neutrons with a focusing ellipsoidal device [P. Böni, Nucl. Instrum. Meth. A 586, 1 (2008); Ch. Schanzer et al., Nucl. Instrum. Meth. 529, 63 (2004)], brilliant cold polarized micro-neutron beams become available. The compact and relatively cheap laser-generated γ beams may serve for extended studies at university-based facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Goulielmakis et al., Science 317, 769 (2007)

    Article  ADS  Google Scholar 

  2. J. Itatani et al., Phys. Rev. Lett. 88, 173903 (2002)

    Article  ADS  Google Scholar 

  3. O. Klimo et al., Phys. Rev. ST Accel. Beams 11, 031301 (2008)

    Article  ADS  Google Scholar 

  4. D. Kiefer et al., Eur. Phys. J. D 55, 427 (2009)

    Article  Google Scholar 

  5. V.V. Kulagin et al., Phys. Rev. Lett. 99, 123801 (2007)

    Article  Google Scholar 

  6. A. Einstein, Annalen der Physik 17, 891 (1905)

    Article  ADS  Google Scholar 

  7. A.K. Sharma et al., Opt. Express 14, 13131 (2006)

    Article  ADS  Google Scholar 

  8. S. Akturk et al., Opt. Express 12, 4399 (2004)

    Article  ADS  Google Scholar 

  9. Z. Sacks et al., Opt. Lett. 26, 462 (2001)

    Article  ADS  Google Scholar 

  10. J.H. Jackson, Classical Electrodynamics (John Wiley, New York, 1972), p. 556

    Google Scholar 

  11. D. Habs et al., Appl. Phys. B 93, 349 (2008)

    Article  ADS  Google Scholar 

  12. A.S. Pirozhkov et al., Phys. Plasmas 14, 123106 (2007)

    Article  ADS  Google Scholar 

  13. A.V. Panchenko, T.Z. Esirkepov, A.S. Pirozhkov, M. Kando, F.F. Kamenets, S.V. Bulanov, submitted to Phys. Plasmas

  14. T. Tajima, Eur. Phys. J. D 55, 519 (2009)

    Article  Google Scholar 

  15. H.R. Weller, M. Ahmed, Mod. Phys. Lett. A 18, 1569 (2003)

    Article  ADS  Google Scholar 

  16. K. Lindenberg, thesis, Development and Construction of the Low-Energy Photon Tagger NEPTUN, TU Darmstadt, 2007

  17. H. Mach et al., Nucl. Instrum. Meth. A 280, 49 (1989)

    Article  ADS  Google Scholar 

  18. J.C. Hardy et al., Phys. Rev. Lett. 37, 133 (1976)

    Article  ADS  Google Scholar 

  19. D. Hilscher et al., Ann. Phys. (Paris) 17, 471 (1992)

    ADS  Google Scholar 

  20. J.U. Anderson et al., Phys. Rev. Lett. 99, 162502 (2007)

    Article  ADS  Google Scholar 

  21. S.A. Karamian et al., Eur. Phys. J. A 17, 49 (2003)

    Article  ADS  Google Scholar 

  22. J. Lang et al., Phys. Lett. 15, 248 (1965)

    ADS  Google Scholar 

  23. S. Kato et al., Nucl. Phys. A 195, 534 (1972)

    Article  ADS  Google Scholar 

  24. L. Lassen et al., Phys. Lett. B 24, 338 (1967)

    Article  ADS  Google Scholar 

  25. R.B. Firestone et al., Table of Isotopes, Vol. 2 (JohnWilley & Sons, New York, 1996)

    Google Scholar 

  26. J.M. Blatt, V.F. Weisskopf, Theortical Nuclear Physics (John Wiley, New York, 1952), p. 389

    Google Scholar 

  27. E. Segre, Nuclei and Particles (W.A. Benjamin, Inc., New York, 1965)

    Google Scholar 

  28. P. Paul, M. Thoennessen, Annu. Rev. Nucl. Part. Sci. 44, 65 (1994)

    Article  ADS  Google Scholar 

  29. J. van Klinken, K. Wisshak, Nucl. Instrum. Meth. 98, 1 (1972); J. van Klinken, S.J. Feenstra, K. Wisshak, H. Faust, Nucl. Instrum. Meth. 130, 427 (1975); J. van Klinken, S.J. Fenstra, G. Dumond, Nucl. Instrum. Meth. 151, 433 (1978)

    Article  ADS  Google Scholar 

  30. B.R. Beck et al., Phys. Rev. Lett. 98, 142501 (2007)

    Article  ADS  Google Scholar 

  31. P.G. Thirolf et al., Optical access to the lowest nuclear transition in 229m Th, MLL anual report 2007, p. 8

  32. E. Peik et al., Europhys. Lett. 61, 181 (2003)

    Article  ADS  Google Scholar 

  33. F.F. Karpeshin et al., Hyperfine Interact. 162, 125 (2005)

    Article  ADS  Google Scholar 

  34. V. Flambaum, arXiv:nucl-th/0801.1994v1 (2008)

  35. G.V. Smirnov et al., Phys. Rev. A 71, 023804 (2005)

    Article  ADS  Google Scholar 

  36. J.P. Hannon et al., Hyperfine Interact. 123/124, 127 (1999)

    Article  Google Scholar 

  37. W. Bertozzi et al., Nucl. Instrum. Meth. B 241, 820 (2005)

    Article  ADS  Google Scholar 

  38. W. Bertozzi et al., Phys. Rev. C 78, 041601(R) (2008)

    Article  ADS  Google Scholar 

  39. J. Pruet et al., J. Appl. Phys. 99, 123102 (2006)

    Article  ADS  Google Scholar 

  40. E.D. Earle et al., Nucl. Phys. A 339, 221c (1983)

    Article  ADS  Google Scholar 

  41. A.I. Titov, M. Fujiwara, K. Kawase, J. Phys. G 32, 1097 (2006)

    Article  ADS  Google Scholar 

  42. W.C. Haxton et al., Phys. Rev. Lett. 86, 5247 (2001)

    Article  ADS  Google Scholar 

  43. W.C. Haxton et al., Phys. Rev. C 65, 045502 (2003)

    Article  ADS  Google Scholar 

  44. E.G. Adelberger et al., Annu. Rev. Nucl. Part. Sci. 35, 501 (1985)

    Article  ADS  Google Scholar 

  45. N. Milosevic et al., Phys. Rev. Lett. 92, 013002 (2004)

    Article  ADS  Google Scholar 

  46. P.G. Thirolf, D. Habs, Prog. Part. Nucl. Phys. 49, 325 (2002)

    Article  ADS  Google Scholar 

  47. P. Böni, Nucl. Instrum. Meth. A 586, 1 (2008)

    Article  ADS  Google Scholar 

  48. Ch. Schanzer et al., Nucl. Instrum. Meth. 529, 63 (2004)

    Article  ADS  Google Scholar 

  49. R.A. Lewis, Phys. Med. Biol. 49, 3573 (2004)

    Article  Google Scholar 

  50. F. Pfeiffer et al., Nature Phys. 2, 258 (2006)

    Article  ADS  Google Scholar 

  51. S.V. Bulanov et al., Phys. Rev. Lett. 91, 085001 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Thirolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habs, D., Tajima, T., Schreiber, J. et al. Vision of nuclear physics with photo-nuclear reactions by laser-driven \(\sf \gamma\) beams. Eur. Phys. J. D 55, 279–285 (2009). https://doi.org/10.1140/epjd/e2009-00101-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00101-2

PACS

Navigation