The European Physical Journal D

, Volume 54, Issue 2, pp 383–389 | Cite as

Pre-sheath formation in an oblique magnetic field: fluid model and PIC simulation

  • J. Kovačič
  • T. GyergyekEmail author
  • M. Čerček
Topical issue: 23rd Symposium on Plasma Physics and Technology


We present some results of a one-dimensional fluid model with a floating electrode immersed in plasma with magnetic field applied at an oblique angle. The model equations are integrated numerically in order to find the space profiles of the ion velocities and electrostatic potential for various strenghts and angles of the magnetic field. We assume a collisionless magnetized pre-sheath with isothermal ions. The results are then compared with the spatial profiles obtained by a computer simulation. We use a BIT1 particle-in-cell code. The simulations input parameters are chosen in the way, that they resemble the fluid model as much as possible. Because the results of the simulation are given in the absolute SI units, they have to be normalized correctly. We evaluate the model results and compare them with the computer simulation results. Special attention is brought on formation of the pre-sheath with magnetic field applied at intermediate angles. The results of the simulation are in good qualitative agreement with the model.


52.25.Xz Magnetized plasmas 52.65.Rr Particle-in-cell method 52.40.Kh Plasma sheaths 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K.U. Riemann, Contrib. Plasma Phys. 34, 127 (1994) Google Scholar
  2. K.U. Riemann, Phys. Plasmas 3, 552 (1994) Google Scholar
  3. D. Bohm, in The Characteristics of Electrical Discharges in Magnetic Fields, edited by A. Guthry, R.K. Wakerling (McGraw-Hill, New York, 1949), Chap. 3, p. 77 Google Scholar
  4. K.U. Riemann, J. Phys. D: Appl. Phys. 24, 493 (1991) Google Scholar
  5. S. Kuhn, K.U. Riemann, N. Jelić, D.D. Tskhakaya, D. Tskhakaya, M. Stanojević, Phys. Plasmas 13, 013503 (2006) Google Scholar
  6. N. Jelić, K.U. Riemann, T. Gyergyek, S. Kuhn, M. Stanojević, J. Duhovnik, Phys. Plasmas 14, 103506 (2007) Google Scholar
  7. N. Jelić, T. Gyergyek, S. Kuhn, J. Krek, J. Duhovnik, in Proceedings of the International Conference Nuclear Energy for New Europe 2008, Portorož, Slovenia, September 8-11, 2008, edited by S. Rožman, T. Žagar, B. Žefran, Nuclear Society of Slovenia (2008), p. 807.1 Google Scholar
  8. R. Chodura, Phys. Fluids 25, 1628 (1982) Google Scholar
  9. R. Chodura, in Physics of Plasma-Wall Interactions in Controlled Fusion, edited by D.E. Post, R. Behrisch (Plenum, New York, 1986), p. 99 Google Scholar
  10. M. Stanojević, J. Duhovnik, N. Jelić, A. Kendl, S. Kuhn, Plasma Phys. Contr. Fusion 47, 685 (2005) Google Scholar
  11. T.M.G. Zimmermann, M. Coppins, J.E. Allen, in Proceedings of the 28th ICPIG, edited by J. Schmidt, M. Šimek, S. Pekárek, V. Prukner (Institute of Plasma Physics of the Academy of Sciences of the Czech Republic, Prague, 2007), p. 335 Google Scholar
  12. D. Tskhakaya, R. Schneider, J. Comput. Phys. 225, 829 (2007) Google Scholar
  13. D. Tskhakaya, S. Kuhn, Y. Tomita, K. Matyash, R. Scnhneider, F. Taccogna, Contrib. Plasma Phys. 48, 121 (2008) Google Scholar
  14. J.P. Verboncoeur, M.V. Alves, V. Vahedi, C.K. Birdsall, J. Comput. Phys. 104, 321 (1993) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Jožef Stefan InstituteLjubljanaSlovenia
  2. 2.University of Ljubljana, Faculty of electrical engineeringLjubljanaSlovenia
  3. 3.University of Maribor, Faculty of civil engineeringMariborSlovenia

Personalised recommendations